import os
import tempfile
from typing import Any
import torch
import numpy as np
from PIL import Image
import gradio as gr
import trimesh
from transparent_background import Remover
from diffusers import DiffusionPipeline

# Import and setup SPAR3D 
os.system("USE_CUDA=1 pip install -vv --no-build-isolation ./texture_baker ./uv_unwrapper")
import spar3d.utils as spar3d_utils
from spar3d.system import SPAR3D

# Constants
COND_WIDTH = 512
COND_HEIGHT = 512
COND_DISTANCE = 2.2
COND_FOVY = 0.591627
BACKGROUND_COLOR = [0.5, 0.5, 0.5]

# Initialize models
device = spar3d_utils.get_device()
bg_remover = Remover()
spar3d_model = SPAR3D.from_pretrained(
    "stabilityai/stable-point-aware-3d",
    config_name="config.yaml",
    weight_name="model.safetensors"
).eval().to(device)

# Initialize FLUX model
dtype = torch.bfloat16
flux_pipe = DiffusionPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-schnell", 
    torch_dtype=dtype
).to(device)

# Initialize camera parameters
c2w_cond = spar3d_utils.default_cond_c2w(COND_DISTANCE)
intrinsic, intrinsic_normed_cond = spar3d_utils.create_intrinsic_from_fov_rad(
    COND_FOVY, COND_HEIGHT, COND_WIDTH
)

def create_rgba_image(rgb_image: Image.Image, mask: np.ndarray = None) -> Image.Image:
    """Create an RGBA image from RGB image and optional mask."""
    rgba_image = rgb_image.convert('RGBA')
    if mask is not None:
        # Ensure mask is 2D before converting to alpha
        if len(mask.shape) > 2:
            mask = mask.squeeze()
        alpha = Image.fromarray((mask * 255).astype(np.uint8))
        rgba_image.putalpha(alpha)
    return rgba_image

def create_batch(input_image: Image.Image) -> dict[str, Any]:
    """Prepare image batch for model input."""
    # Resize and convert input image to numpy array
    resized_image = input_image.resize((COND_WIDTH, COND_HEIGHT))
    img_array = np.array(resized_image).astype(np.float32) / 255.0

    # Extract RGB and alpha channels
    if img_array.shape[-1] == 4:  # RGBA
        rgb = img_array[..., :3]
        mask = img_array[..., 3:4]
    else:  # RGB
        rgb = img_array
        mask = np.ones((*img_array.shape[:2], 1), dtype=np.float32)
    
    # Convert to tensors while keeping channel-last format
    rgb = torch.from_numpy(rgb).float()  # [H, W, 3]
    mask = torch.from_numpy(mask).float()  # [H, W, 1]

    # Create background blend (match channel-last format)
    bg_tensor = torch.tensor(BACKGROUND_COLOR).view(1, 1, 3)  # [1, 1, 3]
 
    # Blend RGB with background using mask (all in channel-last format)
    rgb_cond = torch.lerp(bg_tensor, rgb, mask)  # [H, W, 3]
 
    # Move channels to correct dimension and add batch dimension
    # Important: For SPAR3D image tokenizer, we need [B, H, W, C] format
    rgb_cond = rgb_cond.unsqueeze(0)  # [1, H, W, 3]
    mask = mask.unsqueeze(0)  # [1, H, W, 1]
    
    # Create the batch dictionary
    batch = {
        "rgb_cond": rgb_cond,  # [1, H, W, 3]
        "mask_cond": mask,  # [1, H, W, 1]
        "c2w_cond": c2w_cond.unsqueeze(0),  # [1, 4, 4]
        "intrinsic_cond": intrinsic.unsqueeze(0),  # [1, 3, 3]
        "intrinsic_normed_cond": intrinsic_normed_cond.unsqueeze(0),  # [1, 3, 3]
    }
    
    for k, v in batch.items():
        print(f"[debug] {k} final shape:", v.shape)
 
    return batch

def forward_model(batch, system, guidance_scale=3.0, seed=0, device="cuda"):
    """Process batch through model and generate point cloud."""

    batch_size = batch["rgb_cond"].shape[0]
    assert batch_size == 1, f"Expected batch size 1, got {batch_size}"
    
    # Generate point cloud tokens
    try:
        cond_tokens = system.forward_pdiff_cond(batch)
    except Exception as e:
        print("\n[ERROR] Failed in forward_pdiff_cond:")
        print(e)
        print("\nInput tensor properties:")
        print("rgb_cond dtype:", batch["rgb_cond"].dtype)
        print("rgb_cond device:", batch["rgb_cond"].device)
        print("rgb_cond requires_grad:", batch["rgb_cond"].requires_grad)
        raise
    
    # Sample points
    sample_iter = system.sampler.sample_batch_progressive(
        batch_size,
        cond_tokens,
        guidance_scale=guidance_scale,
        device=device
    )
    
    # Get final samples
    for x in sample_iter:
        samples = x["xstart"]
    
    pc_cond = samples.permute(0, 2, 1).float()

    # Normalize point cloud
    pc_cond = spar3d_utils.normalize_pc_bbox(pc_cond)

    # Subsample to 512 points
    pc_cond = pc_cond[:, torch.randperm(pc_cond.shape[1])[:512]]

    return pc_cond

def generate_and_process_3d(prompt: str) -> tuple[str | None, Image.Image | None]:
    """Generate image from prompt and convert to 3D model."""

    width: int = 1024
    height: int = 1024

    # Generate random seed
    seed = np.random.randint(0, np.iinfo(np.int32).max)
    
    try:
        # Set random seeds
        torch.manual_seed(seed)
        np.random.seed(seed)
        
        # Generate image using FLUX
        generator = torch.Generator(device=device).manual_seed(seed)
        generated_image = flux_pipe(
            prompt=prompt,
            width=width,
            height=height,
            num_inference_steps=4,
            generator=generator,
            guidance_scale=0.0
        ).images[0]
        
        rgb_image = generated_image.convert('RGB')
        
        # bg_remover returns a PIL Image already, no need to convert
        no_bg_image = bg_remover.process(rgb_image)
        print(f"[debug] no_bg_image type: {type(no_bg_image)}, mode: {no_bg_image.mode}")
        
        # Convert to RGBA if not already
        rgba_image = no_bg_image.convert('RGBA')
        print(f"[debug] rgba_image mode: {rgba_image.mode}")
        
        processed_image = spar3d_utils.foreground_crop(
            rgba_image,
            crop_ratio=1.3,
            newsize=(COND_WIDTH, COND_HEIGHT),
            no_crop=False
        )
        
        # Show the processed image alpha channel for debugging
        alpha = np.array(processed_image)[:, :, 3]
        print(f"[debug] Alpha channel stats - min: {alpha.min()}, max: {alpha.max()}, unique: {np.unique(alpha)}")

        # Prepare batch for processing
        batch = create_batch(processed_image)
        batch = {k: v.to(device) for k, v in batch.items()}

        # Generate point cloud
        pc_cond = forward_model(
            batch,
            spar3d_model,
            guidance_scale=3.0,
            seed=seed,
            device=device
        )
        batch["pc_cond"] = pc_cond

        # Generate mesh
        with torch.no_grad():
            with torch.autocast(device_type='cuda' if torch.cuda.is_available() else 'cpu', dtype=torch.bfloat16):
                trimesh_mesh, _ = spar3d_model.generate_mesh(
                    batch,
                    1024,  # texture_resolution
                    remesh="none",
                    vertex_count=-1,
                    estimate_illumination=True
                )
                trimesh_mesh = trimesh_mesh[0]

        # Export to GLB
        temp_dir = tempfile.mkdtemp()
        output_path = os.path.join(temp_dir, 'output.glb')
        
        trimesh_mesh.export(output_path, file_type="glb", include_normals=True)
        
        return output_path
        
    except Exception as e:
        print(f"Error during generation: {str(e)}")
        import traceback
        traceback.print_exc()
        return None

# Create Gradio app using Blocks
with gr.Blocks() as demo:
    gr.Markdown("# Text to 3D")
    gr.Markdown("This space is based on [Stable Point-Aware 3D](https://huggingface.co/spaces/stabilityai/stable-point-aware-3d) by Stability AI.")
    
    with gr.Row():
        prompt_input = gr.Text(
            label="Enter your prompt",
            placeholder="eg. isometric 3D castle"
        )
    
    with gr.Row():
        generate_btn = gr.Button("Generate", variant="primary")
    
    with gr.Row():
        model_output = gr.Model3D(
            label="Generated .GLB model",
            clear_color=[0.0, 0.0, 0.0, 0.0],
        )
    
    # Event handler
    generate_btn.click(
        fn=generate_and_process_3d,
        inputs=[prompt_input],
        outputs=[model_output],
        api_name="generate"
    )
    
if __name__ == "__main__":
    demo.queue().launch()