Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,21 +5,50 @@ import cv2
|
|
5 |
import os
|
6 |
import tempfile
|
7 |
import shutil
|
8 |
-
|
|
|
9 |
from sentence_transformers import SentenceTransformer
|
10 |
import faiss
|
11 |
|
12 |
-
#
|
13 |
-
|
14 |
-
|
15 |
-
"Qwen/Qwen-VL-Chat",
|
16 |
-
device_map="auto",
|
17 |
-
torch_dtype=torch.bfloat16,
|
18 |
-
trust_remote_code=True
|
19 |
-
).eval()
|
20 |
|
21 |
-
#
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
# Global state for FAISS
|
25 |
chunks = []
|
@@ -27,98 +56,153 @@ index = None
|
|
27 |
|
28 |
# PDF processing
|
29 |
def extract_chunks_from_pdf(pdf_path, chunk_size=1000, overlap=200):
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
35 |
|
36 |
def build_faiss_index(chunks):
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
def rag_query(query, chunks, index, top_k=3):
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
# Vision/Text chat
|
49 |
def chat_with_qwen(text=None, image=None):
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
def multimodal_chat(message, history, image=None, video=None, pdf=None):
|
77 |
global chunks, index
|
|
|
|
|
|
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
|
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
# Save and collect image paths
|
101 |
-
images = []
|
102 |
-
for i, frame in enumerate(frames):
|
103 |
-
temp_img_path = os.path.join(temp_dir, f"frame_{i}.jpg")
|
104 |
-
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
105 |
-
cv2.imwrite(temp_img_path, frame_rgb)
|
106 |
-
images.append(temp_img_path)
|
107 |
-
|
108 |
-
# Combine all frames and text into one query
|
109 |
-
elements = [{"image": img} for img in images]
|
110 |
-
if message:
|
111 |
-
elements.append({"text": message})
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
|
121 |
-
|
|
|
|
|
|
|
122 |
|
123 |
# ---- Gradio UI ---- #
|
124 |
with gr.Blocks(css="""
|
@@ -148,7 +232,7 @@ padding: 16px;
|
|
148 |
footer {display: none !important;}
|
149 |
""") as demo:
|
150 |
gr.Markdown(
|
151 |
-
"<h1 style='text-align: center;'>Multimodal Chatbot powered by
|
152 |
"<p style='text-align: center;'>Ask questions with text, images, videos, or PDFs in a smart and multimodal way.</p>"
|
153 |
)
|
154 |
|
@@ -165,6 +249,8 @@ footer {display: none !important;}
|
|
165 |
pdf_input = gr.File(file_types=[".pdf"], label="Upload PDF")
|
166 |
|
167 |
def user_send(message, history, image, video, pdf):
|
|
|
|
|
168 |
response = multimodal_chat(message, history, image, video, pdf)
|
169 |
history.append((message, response))
|
170 |
return "", history
|
@@ -172,5 +258,6 @@ footer {display: none !important;}
|
|
172 |
send_btn.click(user_send, [txt, state, image_input, video_input, pdf_input], [txt, chatbot])
|
173 |
txt.submit(user_send, [txt, state, image_input, video_input, pdf_input], [txt, chatbot])
|
174 |
|
175 |
-
# Launch the app
|
|
|
176 |
demo.launch()
|
|
|
5 |
import os
|
6 |
import tempfile
|
7 |
import shutil
|
8 |
+
import logging
|
9 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
10 |
from sentence_transformers import SentenceTransformer
|
11 |
import faiss
|
12 |
|
13 |
+
# Setup logging
|
14 |
+
logging.basicConfig(level=logging.INFO)
|
15 |
+
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
# Check available resources
|
18 |
+
logger.info(f"CUDA available: {torch.cuda.is_available()}")
|
19 |
+
if torch.cuda.is_available():
|
20 |
+
logger.info(f"GPU: {torch.cuda.get_device_name(0)}")
|
21 |
+
logger.info(f"Memory: {torch.cuda.get_device_properties(0).total_memory / 1e9} GB")
|
22 |
+
|
23 |
+
# Configure quantization for lower memory usage
|
24 |
+
bnb_config = BitsAndBytesConfig(
|
25 |
+
load_in_4bit=True,
|
26 |
+
bnb_4bit_quant_type="nf4",
|
27 |
+
bnb_4bit_compute_dtype=torch.float16,
|
28 |
+
)
|
29 |
+
|
30 |
+
try:
|
31 |
+
# Load Qwen-2.5-Omni-3B with memory optimizations
|
32 |
+
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-Omni-3B", trust_remote_code=True)
|
33 |
+
model = AutoModelForCausalLM.from_pretrained(
|
34 |
+
"Qwen/Qwen2.5-Omni-3B",
|
35 |
+
device_map="auto",
|
36 |
+
quantization_config=bnb_config,
|
37 |
+
trust_remote_code=True
|
38 |
+
).eval()
|
39 |
+
logger.info("Model loaded successfully")
|
40 |
+
except Exception as e:
|
41 |
+
logger.error(f"Error loading model: {e}")
|
42 |
+
model = None
|
43 |
+
tokenizer = None
|
44 |
+
|
45 |
+
# Use a smaller embedding model
|
46 |
+
try:
|
47 |
+
embed_model = SentenceTransformer('paraphrase-MiniLM-L3-v2')
|
48 |
+
logger.info("Embedding model loaded successfully")
|
49 |
+
except Exception as e:
|
50 |
+
logger.error(f"Error loading embedding model: {e}")
|
51 |
+
embed_model = None
|
52 |
|
53 |
# Global state for FAISS
|
54 |
chunks = []
|
|
|
56 |
|
57 |
# PDF processing
|
58 |
def extract_chunks_from_pdf(pdf_path, chunk_size=1000, overlap=200):
|
59 |
+
try:
|
60 |
+
doc = fitz.open(pdf_path)
|
61 |
+
text = ""
|
62 |
+
for page in doc:
|
63 |
+
text += page.get_text()
|
64 |
+
return [text[i:i + chunk_size] for i in range(0, len(text), chunk_size - overlap)]
|
65 |
+
except Exception as e:
|
66 |
+
logger.error(f"PDF extraction error: {e}")
|
67 |
+
return ["Error extracting PDF content"]
|
68 |
|
69 |
def build_faiss_index(chunks):
|
70 |
+
try:
|
71 |
+
if not embed_model:
|
72 |
+
return None
|
73 |
+
embeddings = embed_model.encode(chunks, convert_to_numpy=True)
|
74 |
+
dim = embeddings.shape[1]
|
75 |
+
idx = faiss.IndexFlatL2(dim)
|
76 |
+
idx.add(embeddings)
|
77 |
+
return idx
|
78 |
+
except Exception as e:
|
79 |
+
logger.error(f"FAISS index error: {e}")
|
80 |
+
return None
|
81 |
|
82 |
def rag_query(query, chunks, index, top_k=3):
|
83 |
+
if not index or not embed_model:
|
84 |
+
return "Embedding model not available"
|
85 |
+
try:
|
86 |
+
q_emb = embed_model.encode([query], convert_to_numpy=True)
|
87 |
+
D, I = index.search(q_emb, top_k)
|
88 |
+
return "\n\n".join([chunks[i] for i in I[0]])
|
89 |
+
except Exception as e:
|
90 |
+
logger.error(f"RAG query error: {e}")
|
91 |
+
return "Error retrieving context"
|
92 |
|
93 |
+
# Vision/Text chat with Qwen-2.5-Omni
|
94 |
def chat_with_qwen(text=None, image=None):
|
95 |
+
if not model or not tokenizer:
|
96 |
+
return "Model failed to load due to resource constraints. Try a smaller model or upgrade your space."
|
97 |
+
|
98 |
+
try:
|
99 |
+
# For Qwen-2.5-Omni-3B
|
100 |
+
messages = []
|
101 |
+
|
102 |
+
if image:
|
103 |
+
# Add the image as a message
|
104 |
+
messages.append({"role": "user", "content": [
|
105 |
+
{"image": image},
|
106 |
+
{"text": text if text else "Please describe this image."}
|
107 |
+
]})
|
108 |
+
else:
|
109 |
+
# Text-only query
|
110 |
+
messages.append({"role": "user", "content": text})
|
111 |
+
|
112 |
+
# Generate response
|
113 |
+
response = model.chat(tokenizer, messages)
|
114 |
+
return response
|
115 |
+
except Exception as e:
|
116 |
+
logger.error(f"Chat error: {e}")
|
117 |
+
return f"Error generating response: {str(e)}"
|
118 |
+
|
119 |
+
# Video frame extraction - more memory efficient
|
120 |
+
def extract_video_frames(video_path, max_frames=2):
|
121 |
+
try:
|
122 |
+
cap = cv2.VideoCapture(video_path)
|
123 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
124 |
+
frames = []
|
125 |
+
|
126 |
+
# Take fewer, evenly distributed frames
|
127 |
+
if total_frames > 0:
|
128 |
+
frame_indices = [int(i * total_frames / max_frames) for i in range(max_frames)]
|
129 |
+
for idx in frame_indices:
|
130 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, idx)
|
131 |
+
success, frame = cap.read()
|
132 |
+
if success:
|
133 |
+
frames.append(frame)
|
134 |
+
cap.release()
|
135 |
+
return frames
|
136 |
+
except Exception as e:
|
137 |
+
logger.error(f"Video frame extraction error: {e}")
|
138 |
+
return []
|
139 |
+
|
140 |
+
# Main chatbot logic with error handling
|
141 |
def multimodal_chat(message, history, image=None, video=None, pdf=None):
|
142 |
global chunks, index
|
143 |
+
|
144 |
+
if not model:
|
145 |
+
return "Model not loaded due to memory constraints. Try upgrading your Hugging Face space."
|
146 |
|
147 |
+
try:
|
148 |
+
# PDF-based RAG
|
149 |
+
if pdf:
|
150 |
+
chunks = extract_chunks_from_pdf(pdf.name)
|
151 |
+
index = build_faiss_index(chunks)
|
152 |
+
if index:
|
153 |
+
context = rag_query(message, chunks, index)
|
154 |
+
final_prompt = f"I'll provide some context, then ask a question. Context:\n{context}\n\nQuestion: {message}"
|
155 |
+
response = chat_with_qwen(final_prompt)
|
156 |
+
else:
|
157 |
+
response = "Could not process PDF due to resource constraints"
|
158 |
+
return response
|
159 |
|
160 |
+
# Image
|
161 |
+
if image:
|
162 |
+
response = chat_with_qwen(message, image)
|
163 |
+
return response
|
164 |
|
165 |
+
# Video (extract frames and process one by one)
|
166 |
+
if video:
|
167 |
+
temp_dir = tempfile.mkdtemp()
|
168 |
+
try:
|
169 |
+
video_path = os.path.join(temp_dir, "vid.mp4")
|
170 |
+
shutil.copy(video, video_path)
|
171 |
+
frames = extract_video_frames(video_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
|
173 |
+
# Only process if we got frames
|
174 |
+
if frames:
|
175 |
+
# Save frames and process them
|
176 |
+
frame_descriptions = []
|
177 |
+
for i, frame in enumerate(frames):
|
178 |
+
temp_img_path = os.path.join(temp_dir, f"frame_{i}.jpg")
|
179 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
180 |
+
cv2.imwrite(temp_img_path, frame_rgb)
|
181 |
+
|
182 |
+
# Get description for this frame
|
183 |
+
frame_query = "Describe this video frame in detail."
|
184 |
+
frame_description = chat_with_qwen(frame_query, temp_img_path)
|
185 |
+
frame_descriptions.append(f"Frame {i+1}: {frame_description}")
|
186 |
+
|
187 |
+
# Combine frame descriptions and answer the user's question
|
188 |
+
combined_context = "\n\n".join(frame_descriptions)
|
189 |
+
final_prompt = f"I analyzed some video frames and here's what I found:\n\n{combined_context}\n\nBased on these video frames, {message if message else 'please describe what's happening in this video.'}"
|
190 |
+
response = chat_with_qwen(final_prompt)
|
191 |
+
return response
|
192 |
+
else:
|
193 |
+
return "Could not extract video frames"
|
194 |
+
finally:
|
195 |
+
# Cleanup temp files
|
196 |
+
shutil.rmtree(temp_dir, ignore_errors=True)
|
197 |
|
198 |
+
# Text only
|
199 |
+
if message:
|
200 |
+
return chat_with_qwen(message)
|
201 |
|
202 |
+
return "Please input a message, image, video, or PDF."
|
203 |
+
except Exception as e:
|
204 |
+
logger.error(f"General error in multimodal_chat: {e}")
|
205 |
+
return f"Error processing your request: {str(e)}. This may be due to memory constraints."
|
206 |
|
207 |
# ---- Gradio UI ---- #
|
208 |
with gr.Blocks(css="""
|
|
|
232 |
footer {display: none !important;}
|
233 |
""") as demo:
|
234 |
gr.Markdown(
|
235 |
+
"<h1 style='text-align: center;'>Multimodal Chatbot powered by Qwen-2.5-Omni-3B</h1>"
|
236 |
"<p style='text-align: center;'>Ask questions with text, images, videos, or PDFs in a smart and multimodal way.</p>"
|
237 |
)
|
238 |
|
|
|
249 |
pdf_input = gr.File(file_types=[".pdf"], label="Upload PDF")
|
250 |
|
251 |
def user_send(message, history, image, video, pdf):
|
252 |
+
if not message and not image and not video and not pdf:
|
253 |
+
return "", history
|
254 |
response = multimodal_chat(message, history, image, video, pdf)
|
255 |
history.append((message, response))
|
256 |
return "", history
|
|
|
258 |
send_btn.click(user_send, [txt, state, image_input, video_input, pdf_input], [txt, chatbot])
|
259 |
txt.submit(user_send, [txt, state, image_input, video_input, pdf_input], [txt, chatbot])
|
260 |
|
261 |
+
# Launch the app with memory logging
|
262 |
+
logger.info("Starting Gradio app")
|
263 |
demo.launch()
|