from fastapi.responses import HTMLResponse from fastapi.templating import Jinja2Templates from fastapi import FastAPI, Request, HTTPException from fastapi.middleware.cors import CORSMiddleware import warnings import yfinance as yf import pandas as pd import requests warnings.simplefilter(action='ignore', category=FutureWarning) warnings.filterwarnings('ignore') df_logo = pd.read_csv("https://raw.githubusercontent.com/jarvisx17/nifty500/main/Nifty500.csv") async def calculate_profit(ltp, share, entry): tgt1 = entry + (0.02 * entry) tgt2 = entry + (0.04 * entry) if ltp > tgt2: profit = round((share / 3 * (tgt1-entry)) + (share / 3 * (tgt2-entry)) + (share / 3 * (ltp-entry)), 2) elif ltp > tgt1 and ltp < tgt2: profit = round((share / 3 * (tgt1-entry)) + ((share / 3) * 2 * (ltp-entry)), 2) elif ltp > tgt1: profit = round(share * (ltp-entry), 2) else: profit = round(share * (ltp-entry), 2) return profit async def info(ticker): data = df_logo[df_logo['Symbol'] == ticker] logo = data.logo.values[0] Industry = data.Industry.values[0] return logo, Industry async def calculate_percentage_loss(buying_price, ltp): percentage_loss = ((ltp - buying_price) / buying_price) * 100 return f"{percentage_loss:.2f}%" async def latestprice(ticker): ticker = ticker.split(".")[0] url = f"https://stock-market-lo24myw5sq-el.a.run.app/currentprice?ticker={ticker}" response = requests.get(url) if response.status_code == 200: data = response.json() return data['ltp'] else: return "N/A" async def process_dataframe(df): def get_rsi(close, lookback): ret = close.diff() up = [] down = [] for i in range(len(ret)): if ret[i] < 0: up.append(0) down.append(ret[i]) else: up.append(ret[i]) down.append(0) up_series = pd.Series(up) down_series = pd.Series(down).abs() up_ewm = up_series.ewm(com=lookback - 1, adjust=False).mean() down_ewm = down_series.ewm(com=lookback - 1, adjust=False).mean() rs = up_ewm / down_ewm rsi = 100 - (100 / (1 + rs)) rsi_df = pd.DataFrame(rsi).rename(columns={0: 'RSI'}).set_index(close.index) rsi_df = rsi_df.dropna() return rsi_df[3:] df['RSI'] = get_rsi(df['Close'], 14) df['SMA20'] = df['Close'].rolling(window=20).mean() df.drop(['Adj Close'], axis=1, inplace=True) df = df.dropna() return df async def fin_data(ticker, startdate): ltp = await latestprice(ticker) df=yf.download(ticker, period="36mo", progress=False) df = await process_dataframe(df) df.reset_index(inplace=True) df['Prev_RSI'] = df['RSI'].shift(1).round(2) df = df.dropna() df.reset_index(drop=True, inplace=True) df[['Open', 'High', 'Low', 'Close',"RSI","SMA20"]] = df[['Open', 'High', 'Low', 'Close',"RSI", "SMA20"]].round(2) df = df[200:] df['Target1'] = df['High'] + (df['High'] * 0.02) df['Target1'] = df['Target1'].round(2) df['Target2'] = df['High'] + (df['High'] * 0.04) df['Target2'] = df['Target2'].round(2) df['Target3'] = "will announced" df['SL'] = df['Low'] df['LTP'] = ltp date_index = df.loc[df['Date'] == startdate].index[0] df = df.loc[date_index-1:] df['Date'] = pd.to_datetime(df['Date']) df.reset_index(drop=True,inplace=True) return df async def eqt(ticker, startdate, share_qty = 90): df = await fin_data(ticker, startdate) logo, Industry = await info(ticker) entry = False trading = False shares_held = 0 buy_price = 0 target1 = False target2 = False target3 = False tgt1 = 0 tgt2 = 0 tgt3 = 0 total_profit = 0 profits = [] stop_loss = 0 capital_list = [] data = {} totalshares = share_qty ltp = await latestprice(ticker) for i in range(1, len(df)-1): try: if df.at[i, 'RSI'] > 60 and df.at[i - 1, 'RSI'] < 60 and df.at[i, 'High'] < df.at[i + 1, 'High'] and not entry and not trading: buy_price = df.at[i, 'High'] stop_loss = df.at[i, 'Low'] capital = buy_price * share_qty capital_list.append(capital) shares_held = share_qty entdate = df.at[i+1, 'Date'] entry_info = {"Date": pd.to_datetime(df.at[i+1, 'Date']).strftime('%d-%m-%Y'), "Note": "Entry Successful", "SL": stop_loss} entryStock_info = df.iloc[i: i+1].reset_index(drop=True).to_dict(orient='records')[0] # Entry info entryStock_info['Date'] = str(pd.to_datetime(df.at[i, 'Date']).strftime('%d-%m-%Y')) data['StockInfo'] = {} data['StockInfo']['Stock'] = {} data['StockInfo']['Stock']['Name'] = ticker data['StockInfo']['Stock']['Industry'] = Industry data['StockInfo']['Stock']['Logo'] = logo data['StockInfo']['Stock']['Status'] = "Active" data['StockInfo']['Stock']['Levels'] = "Entry" data['StockInfo']['Stock']['Values'] = entryStock_info buying_price = entryStock_info['High'] ltp = entryStock_info['LTP'] data['StockInfo']['Stock']['Values']['Share QTY'] = share_qty data['StockInfo']['Stock']['Values']['Invested Amount'] = (share_qty * buy_price).round(2) data['StockInfo']['Stock']['Values']['Percentage'] = await calculate_percentage_loss(buying_price, ltp) data['StockInfo']['Stock']['Values']['Total P/L'] = await calculate_profit(ltp, totalshares, buy_price) data['StockInfo']['Entry'] = entry_info entry = True trading = True if trading and not target1: if (df.at[i + 1, 'High'] - buy_price) >= 0.02 * buy_price: stop_loss = buy_price target1 = True tgt1 = 0.02 * buy_price * (share_qty / 3) shares_held -= (share_qty / 3) total_profit = round(tgt1,2) target1_info = {"Date" : pd.to_datetime(df.at[i+1, 'Date']).strftime('%d-%m-%Y'), "Profit" : round(tgt1,2), "Remaining Shares": shares_held,"Note" : "TGT1 Achieved Successfully", "SL" : stop_loss} data['StockInfo']['TGT1'] = target1_info data['StockInfo']['Stock']['Values']['SL'] = stop_loss data['StockInfo']['Stock']['Levels'] = data['StockInfo']['Stock']['Levels'] + " TGT1" data['StockInfo']['Stock']['Values']['Total P/L'] = await calculate_profit(ltp, totalshares, buy_price) data['StockInfo']['Entry']['Trade Status'] = "Trading is ongoing...." if trading and target1 and not target2: if (df.at[i + 1, 'High'] - buy_price) >= 0.04 * buy_price: target2 = True tgt2 = 0.04 * buy_price * (share_qty / 3) total_profit += round(tgt2,2) shares_held -= (share_qty / 3) data['StockInfo']['Stock']['Levels'] = data['StockInfo']['Stock']['Levels'] + " TGT2" data['StockInfo']['Stock']['Values']['Total P/L'] = await calculate_profit(ltp, totalshares, buy_price) target2_info = {"Date" : pd.to_datetime(df.at[i+1, 'Date']).strftime('%d-%m-%Y'), "Profit" : round(tgt2,2), "Remaining Shares": shares_held,"Note" : "TGT2 Achieved Successfully", "SL" : stop_loss} data['StockInfo']['TGT2'] = target2_info data['StockInfo']['Entry']['Trade Status'] = "Trading is ongoing...." if trading and target2 and not target3: if (df.at[i + 1, 'Open'] < df.at[i + 1, 'SMA20'] < df.at[i + 1, 'Close']) or (df.at[i + 1, 'Open'] > df.at[i + 1, 'SMA20'] > df.at[i + 1, 'Close']): stop_loss = df.at[i + 1, 'Low'] data['StockInfo']['Stock']['Values']['SL'] = stop_loss if df.at[i + 2, 'Low'] < stop_loss: target3 = True tgt3 = stop_loss * (share_qty / 3) shares_held -= (share_qty / 3) total_profit += round(tgt3,2) target3_info = {"Date" : pd.to_datetime(df.at[i+1, 'Date']).strftime('%d-%m-%Y'), "Profit" : round(tgt3,2), "Remaining Shares": shares_held,"Note" : "TGT3 Achieved Successfully", "SL" : stop_loss} data['StockInfo']['Stock']['Values']['Target3'] = tgt3 data['StockInfo']['TGT3'] = target3_info data['StockInfo']['Stock']['Levels'] = data['StockInfo']['Stock']['Levels'] +" TGT3" data['StockInfo']['Stock']['Values']['Total P/L'] = await calculate_profit(ltp, totalshares, buy_price) data['StockInfo']['TotalProfit'] = {} data['StockInfo']['TotalProfit']['Profit'] = total_profit data['StockInfo']['Entry']['Trade Status'] = "Trade closed successfully...." data['StockInfo']['TotalProfit']['Trade Status'] = "Trade closed successfully...." break if (df.at[i + 1, 'Low'] < stop_loss and trading and entdate != df.at[i + 1, 'Date']) or stop_loss > ltp: profit_loss = (shares_held * stop_loss) - (shares_held * buy_price) total_profit += profit_loss profits.append(total_profit) shares_held = 0 if data['StockInfo']['Stock']['Values']['Target3'] == "will announced" : data['StockInfo']['Stock']['Values']['Target3'] = "-" data['StockInfo']['Stock']['Status'] = "Closed" data['StockInfo']['Stock']['Levels'] = data['StockInfo']['Stock']['Levels'] +" SL" stoploss_info = {"Date" : pd.to_datetime(df.at[i+1, 'Date']).strftime('%d-%m-%Y'), "Profit" : total_profit, "SL" : stop_loss, "Remaining Shares": shares_held,"Note" : "SL Hit Successfully"} data['StockInfo']['SL'] = stoploss_info data['StockInfo']['TotalProfit'] = {} data['StockInfo']['TotalProfit']['Profit'] = round(total_profit, 2) data['StockInfo']['Stock']['Values']['Total P/L'] = round(total_profit, 2) data['StockInfo']['Entry']['Trade Status'] = "Trade closed successfully...." data['StockInfo']['TotalProfit']['Trade Status'] = "Trade closed successfully...." buy_price = 0 entry = False trading = False target1 = target2 = target3 = False tgt1 = tgt2 = tgt3 = 0 total_profit = 0 break except IndexError: continue if capital_list and profits: return data else: if data: return data else: data['StockInfo'] = {} data['StockInfo']['Stock'] = {} data['StockInfo']['Stock']['Name'] = ticker data['StockInfo']['Stock']['Industry'] = Industry data['StockInfo']['Stock']['Logo'] = logo data['StockInfo']['Stock']['Status'] = "Waiting for entry" entryStock_info = df.iloc[1: 2].reset_index(drop=True).to_dict(orient='records')[0] # Entry info entryStock_info['Date'] = str(pd.to_datetime(df.at[1, 'Date']).strftime('%d-%m-%Y')) data['StockInfo']['Stock']['Values'] = entryStock_info data['StockInfo']['Stock']['Values']['Target3'] = "-" data['StockInfo']['Info'] = "Don't buy stock right now...." return data app = FastAPI() origins = ["*"] app.add_middleware( CORSMiddleware, allow_origins=origins, allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # @app.get('/') # def index(): # return {"message": "welcome to Investify"} templates = Jinja2Templates(directory="templates") @app.get("/", response_class=HTMLResponse) async def read_root(request: Request): return templates.TemplateResponse("hello.html", {"request": request}) # @app.post('/process_stock_details') # async def process_stock_details(request: Request): # data = await request.json() # processed_data = { # 'symbol': data['symbol'], # 'date': data['date'], # 'share': data['share'] # } # return processed_data @app.get('/data') async def get_data(ticker: str, date: str, qty: int): try: response = await eqt(ticker, date, qty) return response except: return {"Timeout" : "Error"} # @app.post('/data') # async def post_data(request: Request): # data = await request.json() # ticker = data.get('ticker') # date = data.get('date') # share_qty = data.get('qty') # response = data_manager.get_equity_data(ticker, date, share_qty) # return response # if __name__ == "__main__": # import uvicorn # uvicorn.run(app, host="0.0.0.0", port=8000)