Update stls.py
Browse files
stls.py
CHANGED
@@ -6,8 +6,8 @@ import pytz
|
|
6 |
import os
|
7 |
|
8 |
mongo_url = os.environ['MongoURL']
|
9 |
-
df_logo = pd.read_csv('https://raw.githubusercontent.com/jarvisx17/nifty500/main/
|
10 |
-
df_logo = df_logo[['Symbol','Industry', "logo"]]
|
11 |
tz = pytz.timezone('Asia/Kolkata')
|
12 |
def UpdatedCollectionName():
|
13 |
current_time = datetime.now(tz)
|
@@ -80,11 +80,11 @@ def Stocks():
|
|
80 |
|
81 |
filtered_data = pd.concat(filtered_data_by_stock)
|
82 |
filtered_data.reset_index(drop=True, inplace=True)
|
83 |
-
filtered_data[['Open', 'High','Low', 'Close', 'RSI', 'Prev_RSI','SMA20', 'PercentageChange']] = filtered_data[['Open', 'High','Low', 'Close', 'RSI', 'Prev_RSI', 'SMA20', 'PercentageChange']].round(2)
|
84 |
filtered_data = filtered_data.sort_values(by='PercentageChange', ascending=False)
|
85 |
filtered_data.reset_index(drop=True, inplace=True)
|
86 |
filtered_data = pd.merge(filtered_data, df_logo, on='Symbol', how='inner')
|
87 |
-
filtered_data = filtered_data[['Symbol', 'Date', 'Open', 'High', 'Low', 'Close', 'RSI', 'Prev_RSI','PercentageChange','Industry', "logo"]]
|
88 |
client = MongoClient(mongo_url)
|
89 |
db = client['mydatabase']
|
90 |
collection_name = UpdatedCollectionName()
|
|
|
6 |
import os
|
7 |
|
8 |
mongo_url = os.environ['MongoURL']
|
9 |
+
df_logo = pd.read_csv('https://raw.githubusercontent.com/jarvisx17/nifty500/main/Stocks.csv')
|
10 |
+
df_logo = df_logo[['Symbol','Industry', "logo", "FNO"]]
|
11 |
tz = pytz.timezone('Asia/Kolkata')
|
12 |
def UpdatedCollectionName():
|
13 |
current_time = datetime.now(tz)
|
|
|
80 |
|
81 |
filtered_data = pd.concat(filtered_data_by_stock)
|
82 |
filtered_data.reset_index(drop=True, inplace=True)
|
83 |
+
filtered_data[['Open', 'High','Low', 'Close', 'RSI', 'Prev_RSI','SMA20','FNO', 'PercentageChange']] = filtered_data[['Open', 'High','Low', 'Close', 'RSI', 'Prev_RSI', 'SMA20','FNO', 'PercentageChange']].round(2)
|
84 |
filtered_data = filtered_data.sort_values(by='PercentageChange', ascending=False)
|
85 |
filtered_data.reset_index(drop=True, inplace=True)
|
86 |
filtered_data = pd.merge(filtered_data, df_logo, on='Symbol', how='inner')
|
87 |
+
filtered_data = filtered_data[['Symbol', 'Date', 'Open', 'High', 'Low', 'Close', 'RSI', 'Prev_RSI','PercentageChange','Industry','FNO', "logo"]]
|
88 |
client = MongoClient(mongo_url)
|
89 |
db = client['mydatabase']
|
90 |
collection_name = UpdatedCollectionName()
|