Update pycatchs/stls.py
Browse files- pycatchs/stls.py +94 -0
pycatchs/stls.py
CHANGED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import yfinance as yf
|
2 |
+
import pandas as pd
|
3 |
+
from datetime import datetime, timedelta
|
4 |
+
from pymongo import MongoClient
|
5 |
+
import pytz
|
6 |
+
import os
|
7 |
+
|
8 |
+
mongo_url = os.environ['MongoURL']
|
9 |
+
df_logo = pd.read_csv('https://raw.githubusercontent.com/jarvisx17/nifty500/main/Nifty500.csv')
|
10 |
+
df_logo = df_logo[['Symbol', "logo"]]
|
11 |
+
tz = pytz.timezone('Asia/Kolkata')
|
12 |
+
def UpdatedCollectionName():
|
13 |
+
current_time = datetime.now(tz)
|
14 |
+
collection_name = current_time.strftime('%Y-%m-%d')
|
15 |
+
if current_time.time() >= datetime.strptime('15:30', '%H:%M').time():
|
16 |
+
collection_name = (current_time + timedelta(days=1)).strftime('%Y-%m-%d')
|
17 |
+
return collection_name
|
18 |
+
else:
|
19 |
+
return collection_name
|
20 |
+
|
21 |
+
def get_rsi(close, lookback=14):
|
22 |
+
ret = close.diff()
|
23 |
+
up = []
|
24 |
+
down = []
|
25 |
+
for i in range(len(ret)):
|
26 |
+
if ret.iloc[i] < 0:
|
27 |
+
up.append(0)
|
28 |
+
down.append(ret.iloc[i])
|
29 |
+
else:
|
30 |
+
up.append(ret.iloc[i])
|
31 |
+
down.append(0)
|
32 |
+
up_series = pd.Series(up, index=close.index)
|
33 |
+
down_series = pd.Series(down, index=close.index).abs()
|
34 |
+
up_ewm = up_series.ewm(com=lookback - 1, adjust=False).mean()
|
35 |
+
down_ewm = down_series.ewm(com=lookback - 1, adjust=False).mean()
|
36 |
+
rs = up_ewm / down_ewm
|
37 |
+
rsi = 100 - (100 / (1 + rs))
|
38 |
+
rsi_df = pd.DataFrame(rsi, columns=['RSI'])
|
39 |
+
return rsi_df
|
40 |
+
|
41 |
+
def Stocks():
|
42 |
+
# end_date = datetime.today()
|
43 |
+
utc_now = datetime.utcnow()
|
44 |
+
indian_timezone = pytz.timezone('Asia/Kolkata')
|
45 |
+
indian_now = utc_now.replace(tzinfo=pytz.utc).astimezone(indian_timezone)
|
46 |
+
end_date = utc_now
|
47 |
+
end_date = end_date.replace(tzinfo=pytz.utc).astimezone(indian_timezone)
|
48 |
+
end_date = end_date.replace(tzinfo=pytz.utc).astimezone(indian_timezone)
|
49 |
+
|
50 |
+
start_date = end_date - timedelta(days=365)
|
51 |
+
nifty500_symbols = []
|
52 |
+
nifty500 = pd.read_csv('https://archives.nseindia.com/content/indices/ind_nifty500list.csv')
|
53 |
+
for symbol in nifty500.Symbol:
|
54 |
+
symbol = f'{symbol}.NS'
|
55 |
+
nifty500_symbols.append(symbol)
|
56 |
+
|
57 |
+
nifty500_data = pd.DataFrame()
|
58 |
+
print("Downloading data...")
|
59 |
+
for symbol in nifty500_symbols:
|
60 |
+
try:
|
61 |
+
stock_data = yf.download(symbol, start=start_date, end=end_date, progress=False)
|
62 |
+
stock_data['Symbol'] = symbol
|
63 |
+
nifty500_data = pd.concat([nifty500_data, stock_data], axis=0)
|
64 |
+
except Exception as e:
|
65 |
+
print(f"Error fetching data for {symbol}: {e}")
|
66 |
+
|
67 |
+
nifty500_data.reset_index(inplace=True)
|
68 |
+
nifty500_data['RSI'] = nifty500_data.groupby('Symbol')['Close'].apply(lambda x: get_rsi(x, lookback=14))
|
69 |
+
nifty500_data['SMA20'] = nifty500_data.groupby('Symbol')['Close'].transform(lambda x: x.rolling(window=20).mean())
|
70 |
+
nifty500_data['PercentageChange'] = nifty500_data.groupby('Symbol')['Close'].pct_change() * 100
|
71 |
+
nifty500_data_last_2_rows = nifty500_data.groupby('Symbol').tail(2)
|
72 |
+
nifty500_data_last_2_rows.reset_index(drop=True, inplace=True)
|
73 |
+
nifty500_data_last_2_rows['Prev_RSI'] = nifty500_data_last_2_rows.groupby('Symbol')['RSI'].shift(1)
|
74 |
+
|
75 |
+
filtered_data_by_stock = []
|
76 |
+
for symbol, group in nifty500_data_last_2_rows.groupby('Symbol'):
|
77 |
+
filtered_stock_data = group[(group['RSI'] >= 60) & (group['Prev_RSI'] < 60)]
|
78 |
+
if not filtered_stock_data.empty:
|
79 |
+
filtered_data_by_stock.append(filtered_stock_data)
|
80 |
+
|
81 |
+
filtered_data = pd.concat(filtered_data_by_stock)
|
82 |
+
filtered_data.reset_index(drop=True, inplace=True)
|
83 |
+
filtered_data[['Open', 'High','Low', 'Close', 'RSI', 'Prev_RSI','SMA20', 'PercentageChange']] = filtered_data[['Open', 'High','Low', 'Close', 'RSI', 'Prev_RSI', 'SMA20', 'PercentageChange']].round(2)
|
84 |
+
filtered_data = filtered_data.sort_values(by='PercentageChange', ascending=False)
|
85 |
+
filtered_data.reset_index(drop=True, inplace=True)
|
86 |
+
filtered_data = pd.merge(filtered_data, df_logo, on='Symbol', how='inner')
|
87 |
+
filtered_data = filtered_data[['Symbol', 'Date', 'Open', 'High', 'Low', 'Close', 'RSI', 'Prev_RSI','PercentageChange', "logo"]]
|
88 |
+
client = MongoClient(mongo_url)
|
89 |
+
db = client['mydatabase']
|
90 |
+
collection_name = UpdatedCollectionName()
|
91 |
+
collection = db[collection_name]
|
92 |
+
data_dict = filtered_data.to_dict(orient='records')
|
93 |
+
collection.insert_many(data_dict)
|
94 |
+
return filtered_data.to_dict(orient="records")
|