testing / app.py
jarvisx17's picture
Rename main.py to app.py
bf33b2c
raw
history blame
12.7 kB
from fastapi import FastAPI, Request, HTTPException
from fastapi.middleware.cors import CORSMiddleware
import warnings
import yfinance as yf
import pandas as pd
import requests
warnings.simplefilter(action='ignore', category=FutureWarning)
warnings.filterwarnings('ignore')
df_logo = pd.read_csv("https://raw.githubusercontent.com/jarvisx17/nifty500/main/Nifty500.csv")
async def calculate_profit(ltp, share, entry):
tgt1 = entry + (0.02 * entry)
tgt2 = entry + (0.04 * entry)
if ltp > tgt2:
profit = round((share / 3 * (tgt1-entry)) + (share / 3 * (tgt2-entry)) + (share / 3 * (ltp-entry)), 2)
elif ltp > tgt1 and ltp < tgt2:
profit = round((share / 3 * (tgt1-entry)) + ((share / 3) * 2 * (ltp-entry)), 2)
elif ltp > tgt1:
profit = round(share * (ltp-entry), 2)
else:
profit = round(share * (ltp-entry), 2)
return profit
async def info(ticker):
data = df_logo[df_logo['Symbol'] == ticker]
logo = data.logo.values[0]
Industry = data.Industry.values[0]
return logo, Industry
async def calculate_percentage_loss(buying_price, ltp):
percentage_loss = ((ltp - buying_price) / buying_price) * 100
return f"{percentage_loss:.2f}%"
async def latestprice(ticker):
ticker = ticker.split(".")[0]
url = f"https://stock-market-lo24myw5sq-el.a.run.app/currentprice?ticker={ticker}"
response = requests.get(url)
if response.status_code == 200:
data = response.json()
return data['ltp']
else:
return "N/A"
async def process_dataframe(df):
def get_rsi(close, lookback):
ret = close.diff()
up = []
down = []
for i in range(len(ret)):
if ret[i] < 0:
up.append(0)
down.append(ret[i])
else:
up.append(ret[i])
down.append(0)
up_series = pd.Series(up)
down_series = pd.Series(down).abs()
up_ewm = up_series.ewm(com=lookback - 1, adjust=False).mean()
down_ewm = down_series.ewm(com=lookback - 1, adjust=False).mean()
rs = up_ewm / down_ewm
rsi = 100 - (100 / (1 + rs))
rsi_df = pd.DataFrame(rsi).rename(columns={0: 'RSI'}).set_index(close.index)
rsi_df = rsi_df.dropna()
return rsi_df[3:]
df['RSI'] = get_rsi(df['Close'], 14)
df['SMA20'] = df['Close'].rolling(window=20).mean()
df.drop(['Adj Close'], axis=1, inplace=True)
df = df.dropna()
return df
async def fin_data(ticker, startdate):
ltp = await latestprice(ticker)
df=yf.download(ticker, period="36mo", progress=False)
df = await process_dataframe(df)
df.reset_index(inplace=True)
df['Prev_RSI'] = df['RSI'].shift(1).round(2)
df = df.dropna()
df.reset_index(drop=True, inplace=True)
df[['Open', 'High', 'Low', 'Close',"RSI","SMA20"]] = df[['Open', 'High', 'Low', 'Close',"RSI", "SMA20"]].round(2)
df = df[200:]
df['Target1'] = df['High'] + (df['High'] * 0.02)
df['Target1'] = df['Target1'].round(2)
df['Target2'] = df['High'] + (df['High'] * 0.04)
df['Target2'] = df['Target2'].round(2)
df['Target3'] = "will announced"
df['SL'] = df['Low']
df['LTP'] = ltp
date_index = df.loc[df['Date'] == startdate].index[0]
df = df.loc[date_index-1:]
df['Date'] = pd.to_datetime(df['Date'])
df.reset_index(drop=True,inplace=True)
return df
async def eqt(ticker, startdate, share_qty = 90):
df = await fin_data(ticker, startdate)
logo, Industry = await info(ticker)
entry = False
trading = False
shares_held = 0
buy_price = 0
target1 = False
target2 = False
target3 = False
tgt1 = 0
tgt2 = 0
tgt3 = 0
total_profit = 0
profits = []
stop_loss = 0
capital_list = []
data = {}
totalshares = share_qty
ltp = await latestprice(ticker)
for i in range(1, len(df)-1):
try:
if df.at[i, 'RSI'] > 60 and df.at[i - 1, 'RSI'] < 60 and df.at[i, 'High'] < df.at[i + 1, 'High'] and not entry and not trading:
buy_price = df.at[i, 'High']
stop_loss = df.at[i, 'Low']
capital = buy_price * share_qty
capital_list.append(capital)
shares_held = share_qty
entdate = df.at[i+1, 'Date']
entry_info = {"Date": pd.to_datetime(df.at[i+1, 'Date']).strftime('%d-%m-%Y'), "Note": "Entry Successful", "SL": stop_loss}
entryStock_info = df.iloc[i: i+1].reset_index(drop=True).to_dict(orient='records')[0] # Entry info
entryStock_info['Date'] = str(pd.to_datetime(df.at[i, 'Date']).strftime('%d-%m-%Y'))
data['StockInfo'] = {}
data['StockInfo']['Stock'] = {}
data['StockInfo']['Stock']['Name'] = ticker
data['StockInfo']['Stock']['Industry'] = Industry
data['StockInfo']['Stock']['Logo'] = logo
data['StockInfo']['Stock']['Status'] = "Active"
data['StockInfo']['Stock']['Levels'] = "Entry"
data['StockInfo']['Stock']['Values'] = entryStock_info
buying_price = entryStock_info['High']
ltp = entryStock_info['LTP']
data['StockInfo']['Stock']['Values']['Share QTY'] = share_qty
data['StockInfo']['Stock']['Values']['Invested Amount'] = (share_qty * buy_price).round(2)
data['StockInfo']['Stock']['Values']['Percentage'] = await calculate_percentage_loss(buying_price, ltp)
data['StockInfo']['Stock']['Values']['Total P/L'] = await calculate_profit(ltp, totalshares, buy_price)
data['StockInfo']['Entry'] = entry_info
entry = True
trading = True
if trading and not target1:
if (df.at[i + 1, 'High'] - buy_price) >= 0.02 * buy_price:
stop_loss = buy_price
target1 = True
tgt1 = 0.02 * buy_price * (share_qty / 3)
shares_held -= (share_qty / 3)
total_profit = round(tgt1,2)
target1_info = {"Date" : pd.to_datetime(df.at[i+1, 'Date']).strftime('%d-%m-%Y'), "Profit" : round(tgt1,2), "Remaining Shares": shares_held,"Note" : "TGT1 Achieved Successfully", "SL" : stop_loss}
data['StockInfo']['TGT1'] = target1_info
data['StockInfo']['Stock']['Values']['SL'] = stop_loss
data['StockInfo']['Stock']['Levels'] = data['StockInfo']['Stock']['Levels'] + " TGT1"
data['StockInfo']['Stock']['Values']['Total P/L'] = await calculate_profit(ltp, totalshares, buy_price)
data['StockInfo']['Entry']['Trade Status'] = "Trading is ongoing...."
if trading and target1 and not target2:
if (df.at[i + 1, 'High'] - buy_price) >= 0.04 * buy_price:
target2 = True
tgt2 = 0.04 * buy_price * (share_qty / 3)
total_profit += round(tgt2,2)
shares_held -= (share_qty / 3)
data['StockInfo']['Stock']['Levels'] = data['StockInfo']['Stock']['Levels'] + " TGT2"
data['StockInfo']['Stock']['Values']['Total P/L'] = await calculate_profit(ltp, totalshares, buy_price)
target2_info = {"Date" : pd.to_datetime(df.at[i+1, 'Date']).strftime('%d-%m-%Y'), "Profit" : round(tgt2,2), "Remaining Shares": shares_held,"Note" : "TGT2 Achieved Successfully", "SL" : stop_loss}
data['StockInfo']['TGT2'] = target2_info
data['StockInfo']['Entry']['Trade Status'] = "Trading is ongoing...."
if trading and target2 and not target3:
if (df.at[i + 1, 'Open'] < df.at[i + 1, 'SMA20'] < df.at[i + 1, 'Close']) or (df.at[i + 1, 'Open'] > df.at[i + 1, 'SMA20'] > df.at[i + 1, 'Close']):
stop_loss = df.at[i + 1, 'Low']
data['StockInfo']['Stock']['Values']['SL'] = stop_loss
if df.at[i + 2, 'Low'] < stop_loss:
target3 = True
tgt3 = stop_loss * (share_qty / 3)
shares_held -= (share_qty / 3)
total_profit += round(tgt3,2)
target3_info = {"Date" : pd.to_datetime(df.at[i+1, 'Date']).strftime('%d-%m-%Y'), "Profit" : round(tgt3,2), "Remaining Shares": shares_held,"Note" : "TGT3 Achieved Successfully", "SL" : stop_loss}
data['StockInfo']['Stock']['Values']['Target3'] = tgt3
data['StockInfo']['TGT3'] = target3_info
data['StockInfo']['Stock']['Levels'] = data['StockInfo']['Stock']['Levels'] +" TGT3"
data['StockInfo']['Stock']['Values']['Total P/L'] = await calculate_profit(ltp, totalshares, buy_price)
data['StockInfo']['TotalProfit'] = {}
data['StockInfo']['TotalProfit']['Profit'] = total_profit
data['StockInfo']['Entry']['Trade Status'] = "Trade closed successfully...."
data['StockInfo']['TotalProfit']['Trade Status'] = "Trade closed successfully...."
break
if (df.at[i + 1, 'Low'] < stop_loss and trading and entdate != df.at[i + 1, 'Date']) or stop_loss > ltp:
profit_loss = (shares_held * stop_loss) - (shares_held * buy_price)
total_profit += profit_loss
profits.append(total_profit)
shares_held = 0
if data['StockInfo']['Stock']['Values']['Target3'] == "will announced" :
data['StockInfo']['Stock']['Values']['Target3'] = "-"
data['StockInfo']['Stock']['Status'] = "Closed"
data['StockInfo']['Stock']['Levels'] = data['StockInfo']['Stock']['Levels'] +" SL"
stoploss_info = {"Date" : pd.to_datetime(df.at[i+1, 'Date']).strftime('%d-%m-%Y'), "Profit" : total_profit, "SL" : stop_loss, "Remaining Shares": shares_held,"Note" : "SL Hit Successfully"}
data['StockInfo']['SL'] = stoploss_info
data['StockInfo']['TotalProfit'] = {}
data['StockInfo']['TotalProfit']['Profit'] = round(total_profit, 2)
data['StockInfo']['Stock']['Values']['Total P/L'] = round(total_profit, 2)
data['StockInfo']['Entry']['Trade Status'] = "Trade closed successfully...."
data['StockInfo']['TotalProfit']['Trade Status'] = "Trade closed successfully...."
buy_price = 0
entry = False
trading = False
target1 = target2 = target3 = False
tgt1 = tgt2 = tgt3 = 0
total_profit = 0
break
except IndexError:
continue
if capital_list and profits:
return data
else:
if data:
return data
else:
data['StockInfo'] = {}
data['StockInfo']['Stock'] = {}
data['StockInfo']['Stock']['Name'] = ticker
data['StockInfo']['Stock']['Industry'] = Industry
data['StockInfo']['Stock']['Logo'] = logo
data['StockInfo']['Stock']['Status'] = "Waiting for entry"
entryStock_info = df.iloc[1: 2].reset_index(drop=True).to_dict(orient='records')[0] # Entry info
entryStock_info['Date'] = str(pd.to_datetime(df.at[1, 'Date']).strftime('%d-%m-%Y'))
data['StockInfo']['Stock']['Values'] = entryStock_info
data['StockInfo']['Stock']['Values']['Target3'] = "-"
data['StockInfo']['Info'] = "Don't buy stock right now...."
return data
app = FastAPI()
origins = ["*"]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get('/')
def index():
return {"message": "welcome to Investify"}
# @app.post('/process_stock_details')
# async def process_stock_details(request: Request):
# data = await request.json()
# processed_data = {
# 'symbol': data['symbol'],
# 'date': data['date'],
# 'share': data['share']
# }
# return processed_data
@app.get('/data')
async def get_data(ticker: str, date: str, qty: int):
# response = await eqt(ticker, date, qty)
# return response
try:
response = await eqt(ticker, date, qty)
return response
except:
return {"Timeout" : "Error"}
# @app.post('/data')
# async def post_data(request: Request):
# data = await request.json()
# ticker = data.get('ticker')
# date = data.get('date')
# share_qty = data.get('qty')
# response = data_manager.get_equity_data(ticker, date, share_qty)
# return response
# if __name__ == "__main__":
# import uvicorn
# uvicorn.run(app, host="0.0.0.0", port=8000)