File size: 11,469 Bytes
ec83a72
 
 
26c3913
ec83a72
 
 
 
77ff22c
ec83a72
e132f82
ec83a72
 
 
 
 
 
 
 
 
 
 
 
e132f82
ec83a72
 
 
 
 
1ef4925
e132f82
ec83a72
 
 
e132f82
ec83a72
1ef4925
 
 
 
 
ec83a72
 
1ef4925
ec83a72
1ef4925
ec83a72
e132f82
ec83a72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e132f82
ec83a72
e132f82
ec83a72
e132f82
ec83a72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e272d0
ec83a72
e132f82
 
ec83a72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e132f82
ec83a72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e132f82
 
ec83a72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e132f82
ec83a72
 
 
 
 
 
 
 
 
e132f82
ec83a72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e132f82
ec83a72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import yfinance as yf
import pandas as pd
import requests
import warnings

warnings.simplefilter(action='ignore', category=FutureWarning)
warnings.filterwarnings('ignore')

df_logo = pd.read_csv("https://raw.githubusercontent.com/jarvisx17/nifty500/main/Stocks.csv")

def calculate_profit(ltp, share, entry):
  tgt1 = entry + (0.02 * entry)
  tgt2 = entry + (0.04 * entry)
  if ltp > tgt2:
      profit = round((share / 3 * (tgt1-entry)) + (share / 3 * (tgt2-entry)) + (share / 3 * (ltp-entry)), 2)
  elif ltp > tgt1 and ltp < tgt2:
      profit = round((share / 3 * (tgt1-entry)) + ((share / 3) * 2 * (ltp-entry)), 2)
  elif ltp > tgt1:
      profit = round(share * (ltp-entry), 2)   
  else:
      profit = round(share * (ltp-entry), 2)
  return profit

def info(ticker):
    data = df_logo[df_logo['Symbol'] == ticker]
    logo = data.logo.values[0]
    Industry = data.Industry.values[0]
    return logo, Industry


def calculate_percentage_loss(buying_price, ltp):
    percentage_loss = ((ltp - buying_price) / buying_price) * 100
    return f"{percentage_loss:.2f}%"

def latestprice(ticker):
    ticker = ticker.split(".")[0]
    url = f'https://groww.in/v1/api/stocks_data/v1/accord_points/exchange/NSE/segment/CASH/latest_prices_ohlc/{ticker}'
    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0'
    }
    response = requests.get(url, headers=headers)
    if response.status_code == 200:
        data = response.json()
        return float(data['ltp'])
    else:
        return 0.0

def process_dataframe(df):

    def get_rsi(close, lookback):
        ret = close.diff()
        up = []
        down = []
        for i in range(len(ret)):
            if ret[i] < 0:
                up.append(0)
                down.append(ret[i])
            else:
                up.append(ret[i])
                down.append(0)
        up_series = pd.Series(up)
        down_series = pd.Series(down).abs()
        up_ewm = up_series.ewm(com=lookback - 1, adjust=False).mean()
        down_ewm = down_series.ewm(com=lookback - 1, adjust=False).mean()
        rs = up_ewm / down_ewm
        rsi = 100 - (100 / (1 + rs))
        rsi_df = pd.DataFrame(rsi).rename(columns={0: 'RSI'}).set_index(close.index)
        rsi_df = rsi_df.dropna()
        return rsi_df[3:]

    df['RSI'] = get_rsi(df['Close'], 14)
    df['SMA20'] = df['Close'].rolling(window=20).mean()
    df.drop(['Adj Close'], axis=1, inplace=True)
    df = df.dropna()

    return df

def fin_data(ticker, startdate):

  ltp = latestprice(ticker)
  df=yf.download(ticker, period="36mo", progress=False)
  df = process_dataframe(df)
  df.reset_index(inplace=True)
  df['Prev_RSI'] = df['RSI'].shift(1).round(2)
  df = df.dropna()
  df.reset_index(drop=True, inplace=True)
  df[['Open', 'High', 'Low', 'Close',"RSI","SMA20"]] = df[['Open', 'High', 'Low', 'Close',"RSI", "SMA20"]].round(2)
  df = df[200:]
  df['Target1'] = df['High'] + (df['High'] * 0.02)
  df['Target1'] = df['Target1'].round(2)
  df['Target2'] = df['High'] + (df['High'] * 0.04)
  df['Target2'] = df['Target2'].round(2)
  df['Target3'] = "will announced"
  df['SL'] = df['Low']
  df['LTP'] = ltp
  date_index = df.loc[df['Date'] == startdate].index[0]
  df = df.loc[date_index-1:]
  df['Date'] = pd.to_datetime(df['Date'])
  df.reset_index(drop=True,inplace=True)

  return df

def eqt(ticker, startdate, share_qty = 90):

  df = fin_data(ticker, startdate)
  logo, Industry = info(ticker)
  entry = False
  trading = False
  shares_held = 0
  buy_price = 0
  target1 = False
  target2 = False
  target3 = False
  tgt1 = 0
  tgt2 = 0
  tgt3 = 0
  total_profit = 0
  profits = []
  stop_loss = 0
  capital_list = []
  data = {}
  totalshares = share_qty
  ltp = latestprice(ticker)

  for i in range(1, len(df)-1):
      try:
          if df.at[i, 'RSI'] > 60 and df.at[i - 1, 'RSI'] < 60 and df.at[i, 'High'] < df.at[i + 1, 'High'] and not entry and not trading:
              buy_price = df.at[i, 'High']
              stop_loss = df.at[i, 'Low']
              capital = buy_price * share_qty
              capital_list.append(capital)
              shares_held = share_qty
              entdate = df.at[i+1, 'Date']
              entry_info = {"Date": pd.to_datetime(df.at[i+1, 'Date']).strftime('%d-%m-%Y'), "Note": "Entry Successful", "SL": stop_loss}
              entryStock_info = df.iloc[i: i+1].reset_index(drop=True).to_dict(orient='records')[0] # Entry info
              entryStock_info['Date'] = str(pd.to_datetime(df.at[i, 'Date']).strftime('%d-%m-%Y'))
              data['StockInfo'] = {}
              data['StockInfo']['Stock'] = {}
              data['StockInfo']['Stock']['Name'] = ticker
              data['StockInfo']['Stock']['Industry'] = Industry
              data['StockInfo']['Stock']['Logo'] = logo
              data['StockInfo']['Stock']['Status'] = "Active"
              data['StockInfo']['Stock']['Levels'] = "Entry"
              data['StockInfo']['Stock']['Values'] = entryStock_info
              buying_price = entryStock_info['High']
              ltp = entryStock_info['LTP']
              data['StockInfo']['Stock']['Values']['Share QTY'] = share_qty
              data['StockInfo']['Stock']['Values']['Invested Amount'] = (share_qty * buy_price).round(2)
              data['StockInfo']['Stock']['Values']['Percentage'] = calculate_percentage_loss(buying_price, ltp)
              data['StockInfo']['Stock']['Values']['Total P/L'] = calculate_profit(ltp, totalshares, buy_price)
              data['StockInfo']['Entry'] = entry_info
              entry = True
              trading = True

          if trading and not target1:
              if (df.at[i + 1, 'High'] - buy_price) >= 0.02 * buy_price:
                  stop_loss = buy_price
                  target1 = True
                  tgt1 = 0.02 * buy_price * (share_qty / 3)
                  shares_held -= (share_qty / 3)
                  total_profit = round(tgt1,2)
                  target1_info = {"Date" : pd.to_datetime(df.at[i+1, 'Date']).strftime('%d-%m-%Y'), "Profit" : round(tgt1,2), "Remaining Shares": shares_held,"Note" : "TGT1 Achieved Successfully", "SL" : stop_loss}
                  data['StockInfo']['TGT1'] = target1_info
                  data['StockInfo']['Stock']['Values']['SL'] = stop_loss
                  data['StockInfo']['Stock']['Levels'] = data['StockInfo']['Stock']['Levels'] + " TGT1"
                  data['StockInfo']['Stock']['Values']['Total P/L'] = calculate_profit(ltp, totalshares, buy_price)
                  data['StockInfo']['Entry']['Trade Status'] = "Trading is ongoing...."

          if trading and target1 and not target2:
              if (df.at[i + 1, 'High'] - buy_price) >= 0.04 * buy_price:
                  target2 = True
                  tgt2 = 0.04 * buy_price * (share_qty / 3)
                  total_profit += round(tgt2,2)
                  shares_held -= (share_qty / 3)
                  data['StockInfo']['Stock']['Levels'] = data['StockInfo']['Stock']['Levels'] + " TGT2"
                  data['StockInfo']['Stock']['Values']['Total P/L'] = calculate_profit(ltp, totalshares, buy_price)
                  target2_info = {"Date" : pd.to_datetime(df.at[i+1, 'Date']).strftime('%d-%m-%Y'), "Profit" : round(tgt2,2), "Remaining Shares": shares_held,"Note" : "TGT2 Achieved Successfully", "SL" : stop_loss}
                  data['StockInfo']['TGT2'] = target2_info
                  data['StockInfo']['Entry']['Trade Status']  = "Trading is ongoing...."

          if trading and target2 and not target3:
              if (df.at[i + 1, 'Open'] < df.at[i + 1, 'SMA20'] < df.at[i + 1, 'Close']) or (df.at[i + 1, 'Open'] > df.at[i + 1, 'SMA20'] > df.at[i + 1, 'Close']):
                  stop_loss = df.at[i + 1, 'Low']
                  data['StockInfo']['Stock']['Values']['SL'] = stop_loss
                  if df.at[i + 2, 'Low'] < stop_loss:
                      target3 = True
                      tgt3 = stop_loss * (share_qty / 3)
                      shares_held -= (share_qty / 3)
                      total_profit += round(tgt3,2)
                      target3_info = {"Date" : pd.to_datetime(df.at[i+1, 'Date']).strftime('%d-%m-%Y'), "Profit" : round(tgt3,2), "Remaining Shares": shares_held,"Note" : "TGT3 Achieved Successfully", "SL" : stop_loss}
                      data['StockInfo']['Stock']['Values']['Target3'] = tgt3
                      data['StockInfo']['TGT3'] = target3_info
                      data['StockInfo']['Stock']['Levels'] = data['StockInfo']['Stock']['Levels'] +" TGT3"
                      data['StockInfo']['Stock']['Values']['Total P/L'] = calculate_profit(ltp, totalshares, buy_price)
                      data['StockInfo']['TotalProfit'] = {}
                      data['StockInfo']['TotalProfit']['Profit'] = total_profit
                      data['StockInfo']['Entry']['Trade Status']  = "Trade closed successfully...."
                      data['StockInfo']['TotalProfit']['Trade Status']  = "Trade closed successfully...."
                      break

          if (df.at[i + 1, 'Low'] < stop_loss and trading and entdate != df.at[i + 1, 'Date']) or stop_loss > ltp:
              profit_loss = (shares_held * stop_loss) - (shares_held * buy_price)
              total_profit += profit_loss
              profits.append(total_profit)
              shares_held = 0
              if data['StockInfo']['Stock']['Values']['Target3'] == "will announced" :
                data['StockInfo']['Stock']['Values']['Target3'] = "-"
              data['StockInfo']['Stock']['Status'] = "Closed"
              data['StockInfo']['Stock']['Levels'] = data['StockInfo']['Stock']['Levels'] +" SL"
              stoploss_info = {"Date" : pd.to_datetime(df.at[i+1, 'Date']).strftime('%d-%m-%Y'), "Profit" : total_profit, "SL" : stop_loss, "Remaining Shares": shares_held,"Note" : "SL Hit Successfully"}
              data['StockInfo']['SL'] = stoploss_info
              data['StockInfo']['TotalProfit'] = {}
              data['StockInfo']['TotalProfit']['Profit'] = round(total_profit, 2)
              data['StockInfo']['Stock']['Values']['Total P/L'] = round(total_profit, 2)
              data['StockInfo']['Entry']['Trade Status']  = "Trade closed successfully...."
              data['StockInfo']['TotalProfit']['Trade Status']  = "Trade closed successfully...."
              buy_price = 0
              entry = False
              trading = False
              target1 = target2 = target3 = False
              tgt1 = tgt2 = tgt3 = 0
              total_profit = 0
              break

      except IndexError:
          continue

  if capital_list and profits:

    return data

  else:
    if data:

      return data

    else:
      data['StockInfo'] = {}
      data['StockInfo']['Stock'] = {}
      data['StockInfo']['Stock']['Name']  = ticker
      data['StockInfo']['Stock']['Industry'] = Industry
      data['StockInfo']['Stock']['Logo'] = logo
      data['StockInfo']['Stock']['Status'] = "Waiting for entry"
      entryStock_info = df.iloc[1: 2].reset_index(drop=True).to_dict(orient='records')[0] # Entry info
      entryStock_info['Date'] = str(pd.to_datetime(df.at[1, 'Date']).strftime('%d-%m-%Y'))
      data['StockInfo']['Stock']['Values'] = entryStock_info
      data['StockInfo']['Stock']['Values']['Target3'] = "-"
      data['StockInfo']['Info'] = "Don't buy stock right now...."

      return data