File size: 13,474 Bytes
d8d5853
 
 
558c675
 
 
d8d5853
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
558c675
 
d8d5853
 
 
 
 
 
 
 
558c675
d8d5853
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
from fastapi import FastAPI, Request
from fastapi.responses import HTMLResponse
from fastapi.templating import Jinja2Templates

app = FastAPI()

templates = Jinja2Templates(directory="templates")

@app.get("/", response_class=HTMLResponse)
async def read_root(request: Request):
    return templates.TemplateResponse("hello.html", {"request": request})


# from fastapi import FastAPI, Request, HTTPException
# from fastapi.middleware.cors import CORSMiddleware
# import warnings
# import yfinance as yf
# import pandas as pd
# import requests

# warnings.simplefilter(action='ignore', category=FutureWarning)
# warnings.filterwarnings('ignore')

# df_logo = pd.read_csv("https://raw.githubusercontent.com/jarvisx17/nifty500/main/Nifty500.csv")

# async def calculate_profit(ltp, share, entry):
#   tgt1 = entry + (0.02 * entry)
#   tgt2 = entry + (0.04 * entry)
#   if ltp > tgt2:
#       profit = round((share / 3 * (tgt1-entry)) + (share / 3 * (tgt2-entry)) + (share / 3 * (ltp-entry)), 2)
#   elif ltp > tgt1 and ltp < tgt2:
#       profit = round((share / 3 * (tgt1-entry)) + ((share / 3) * 2 * (ltp-entry)), 2)
#   elif ltp > tgt1:
#       profit = round(share * (ltp-entry), 2)   
#   else:
#       profit = round(share * (ltp-entry), 2)
#   return profit

# async def info(ticker):
#     data = df_logo[df_logo['Symbol'] == ticker]
#     logo = data.logo.values[0]
#     Industry = data.Industry.values[0]
#     return logo, Industry

# async def calculate_percentage_loss(buying_price, ltp):
#     percentage_loss = ((ltp - buying_price) / buying_price) * 100
#     return f"{percentage_loss:.2f}%"

# async def latestprice(ticker):
#     ticker = ticker.split(".")[0]
#     url = f"https://stock-market-lo24myw5sq-el.a.run.app/currentprice?ticker={ticker}"
#     response = requests.get(url)
#     if response.status_code == 200:
#         data = response.json()
#         return data['ltp']
#     else:
#         return "N/A"

# async def process_dataframe(df):

#     def get_rsi(close, lookback):
#         ret = close.diff()
#         up = []
#         down = []
#         for i in range(len(ret)):
#             if ret[i] < 0:
#                 up.append(0)
#                 down.append(ret[i])
#             else:
#                 up.append(ret[i])
#                 down.append(0)
#         up_series = pd.Series(up)
#         down_series = pd.Series(down).abs()
#         up_ewm = up_series.ewm(com=lookback - 1, adjust=False).mean()
#         down_ewm = down_series.ewm(com=lookback - 1, adjust=False).mean()
#         rs = up_ewm / down_ewm
#         rsi = 100 - (100 / (1 + rs))
#         rsi_df = pd.DataFrame(rsi).rename(columns={0: 'RSI'}).set_index(close.index)
#         rsi_df = rsi_df.dropna()
#         return rsi_df[3:]

#     df['RSI'] = get_rsi(df['Close'], 14)
#     df['SMA20'] = df['Close'].rolling(window=20).mean()
#     df.drop(['Adj Close'], axis=1, inplace=True)
#     df = df.dropna()

#     return df

# async def fin_data(ticker, startdate):

#   ltp = await latestprice(ticker)
#   df=yf.download(ticker, period="36mo", progress=False)
#   df = await process_dataframe(df)
#   df.reset_index(inplace=True)
#   df['Prev_RSI'] = df['RSI'].shift(1).round(2)
#   df = df.dropna()
#   df.reset_index(drop=True, inplace=True)
#   df[['Open', 'High', 'Low', 'Close',"RSI","SMA20"]] = df[['Open', 'High', 'Low', 'Close',"RSI", "SMA20"]].round(2)
#   df = df[200:]
#   df['Target1'] = df['High'] + (df['High'] * 0.02)
#   df['Target1'] = df['Target1'].round(2)
#   df['Target2'] = df['High'] + (df['High'] * 0.04)
#   df['Target2'] = df['Target2'].round(2)
#   df['Target3'] = "will announced"
#   df['SL'] = df['Low']
#   df['LTP'] = ltp
#   date_index = df.loc[df['Date'] == startdate].index[0]
#   df = df.loc[date_index-1:]
#   df['Date'] = pd.to_datetime(df['Date'])
#   df.reset_index(drop=True,inplace=True)

#   return df

# async def eqt(ticker, startdate, share_qty = 90):

#   df = await fin_data(ticker, startdate)
#   logo, Industry = await info(ticker)
#   entry = False
#   trading = False
#   shares_held = 0
#   buy_price = 0
#   target1 = False
#   target2 = False
#   target3 = False
#   tgt1 = 0
#   tgt2 = 0
#   tgt3 = 0
#   total_profit = 0
#   profits = []
#   stop_loss = 0
#   capital_list = []
#   data = {}
#   totalshares = share_qty
#   ltp = await latestprice(ticker)

#   for i in range(1, len(df)-1):
#       try:
#           if df.at[i, 'RSI'] > 60 and df.at[i - 1, 'RSI'] < 60 and df.at[i, 'High'] < df.at[i + 1, 'High'] and not entry and not trading:
#               buy_price = df.at[i, 'High']
#               stop_loss = df.at[i, 'Low']
#               capital = buy_price * share_qty
#               capital_list.append(capital)
#               shares_held = share_qty
#               entdate = df.at[i+1, 'Date']
#               entry_info = {"Date": pd.to_datetime(df.at[i+1, 'Date']).strftime('%d-%m-%Y'), "Note": "Entry Successful", "SL": stop_loss}
#               entryStock_info = df.iloc[i: i+1].reset_index(drop=True).to_dict(orient='records')[0] # Entry info
#               entryStock_info['Date'] = str(pd.to_datetime(df.at[i, 'Date']).strftime('%d-%m-%Y'))
#               data['StockInfo'] = {}
#               data['StockInfo']['Stock'] = {}
#               data['StockInfo']['Stock']['Name'] = ticker
#               data['StockInfo']['Stock']['Industry'] = Industry
#               data['StockInfo']['Stock']['Logo'] = logo
#               data['StockInfo']['Stock']['Status'] = "Active"
#               data['StockInfo']['Stock']['Levels'] = "Entry"
#               data['StockInfo']['Stock']['Values'] = entryStock_info
#               buying_price = entryStock_info['High']
#               ltp = entryStock_info['LTP']
#               data['StockInfo']['Stock']['Values']['Share QTY'] = share_qty
#               data['StockInfo']['Stock']['Values']['Invested Amount'] = (share_qty * buy_price).round(2)
#               data['StockInfo']['Stock']['Values']['Percentage'] = await calculate_percentage_loss(buying_price, ltp)
#               data['StockInfo']['Stock']['Values']['Total P/L'] = await calculate_profit(ltp, totalshares, buy_price)
#               data['StockInfo']['Entry'] = entry_info
#               entry = True
#               trading = True

#           if trading and not target1:
#               if (df.at[i + 1, 'High'] - buy_price) >= 0.02 * buy_price:
#                   stop_loss = buy_price
#                   target1 = True
#                   tgt1 = 0.02 * buy_price * (share_qty / 3)
#                   shares_held -= (share_qty / 3)
#                   total_profit = round(tgt1,2)
#                   target1_info = {"Date" : pd.to_datetime(df.at[i+1, 'Date']).strftime('%d-%m-%Y'), "Profit" : round(tgt1,2), "Remaining Shares": shares_held,"Note" : "TGT1 Achieved Successfully", "SL" : stop_loss}
#                   data['StockInfo']['TGT1'] = target1_info
#                   data['StockInfo']['Stock']['Values']['SL'] = stop_loss
#                   data['StockInfo']['Stock']['Levels'] = data['StockInfo']['Stock']['Levels'] + " TGT1"
#                   data['StockInfo']['Stock']['Values']['Total P/L'] = await calculate_profit(ltp, totalshares, buy_price)
#                   data['StockInfo']['Entry']['Trade Status'] = "Trading is ongoing...."

#           if trading and target1 and not target2:
#               if (df.at[i + 1, 'High'] - buy_price) >= 0.04 * buy_price:
#                   target2 = True
#                   tgt2 = 0.04 * buy_price * (share_qty / 3)
#                   total_profit += round(tgt2,2)
#                   shares_held -= (share_qty / 3)
#                   data['StockInfo']['Stock']['Levels'] = data['StockInfo']['Stock']['Levels'] + " TGT2"
#                   data['StockInfo']['Stock']['Values']['Total P/L'] = await calculate_profit(ltp, totalshares, buy_price)
#                   target2_info = {"Date" : pd.to_datetime(df.at[i+1, 'Date']).strftime('%d-%m-%Y'), "Profit" : round(tgt2,2), "Remaining Shares": shares_held,"Note" : "TGT2 Achieved Successfully", "SL" : stop_loss}
#                   data['StockInfo']['TGT2'] = target2_info
#                   data['StockInfo']['Entry']['Trade Status']  = "Trading is ongoing...."

#           if trading and target2 and not target3:
#               if (df.at[i + 1, 'Open'] < df.at[i + 1, 'SMA20'] < df.at[i + 1, 'Close']) or (df.at[i + 1, 'Open'] > df.at[i + 1, 'SMA20'] > df.at[i + 1, 'Close']):
#                   stop_loss = df.at[i + 1, 'Low']
#                   data['StockInfo']['Stock']['Values']['SL'] = stop_loss
#                   if df.at[i + 2, 'Low'] < stop_loss:
#                       target3 = True
#                       tgt3 = stop_loss * (share_qty / 3)
#                       shares_held -= (share_qty / 3)
#                       total_profit += round(tgt3,2)
#                       target3_info = {"Date" : pd.to_datetime(df.at[i+1, 'Date']).strftime('%d-%m-%Y'), "Profit" : round(tgt3,2), "Remaining Shares": shares_held,"Note" : "TGT3 Achieved Successfully", "SL" : stop_loss}
#                       data['StockInfo']['Stock']['Values']['Target3'] = tgt3
#                       data['StockInfo']['TGT3'] = target3_info
#                       data['StockInfo']['Stock']['Levels'] = data['StockInfo']['Stock']['Levels'] +" TGT3"
#                       data['StockInfo']['Stock']['Values']['Total P/L'] = await calculate_profit(ltp, totalshares, buy_price)
#                       data['StockInfo']['TotalProfit'] = {}
#                       data['StockInfo']['TotalProfit']['Profit'] = total_profit
#                       data['StockInfo']['Entry']['Trade Status']  = "Trade closed successfully...."
#                       data['StockInfo']['TotalProfit']['Trade Status']  = "Trade closed successfully...."
#                       break

#           if (df.at[i + 1, 'Low'] < stop_loss and trading and entdate != df.at[i + 1, 'Date']) or stop_loss > ltp:
#               profit_loss = (shares_held * stop_loss) - (shares_held * buy_price)
#               total_profit += profit_loss
#               profits.append(total_profit)
#               shares_held = 0
#               if data['StockInfo']['Stock']['Values']['Target3'] == "will announced" :
#                 data['StockInfo']['Stock']['Values']['Target3'] = "-"
#               data['StockInfo']['Stock']['Status'] = "Closed"
#               data['StockInfo']['Stock']['Levels'] = data['StockInfo']['Stock']['Levels'] +" SL"
#               stoploss_info = {"Date" : pd.to_datetime(df.at[i+1, 'Date']).strftime('%d-%m-%Y'), "Profit" : total_profit, "SL" : stop_loss, "Remaining Shares": shares_held,"Note" : "SL Hit Successfully"}
#               data['StockInfo']['SL'] = stoploss_info
#               data['StockInfo']['TotalProfit'] = {}
#               data['StockInfo']['TotalProfit']['Profit'] = round(total_profit, 2)
#               data['StockInfo']['Stock']['Values']['Total P/L'] = round(total_profit, 2)
#               data['StockInfo']['Entry']['Trade Status']  = "Trade closed successfully...."
#               data['StockInfo']['TotalProfit']['Trade Status']  = "Trade closed successfully...."
#               buy_price = 0
#               entry = False
#               trading = False
#               target1 = target2 = target3 = False
#               tgt1 = tgt2 = tgt3 = 0
#               total_profit = 0
#               break

#       except IndexError:
#           continue

#   if capital_list and profits:

#     return data

#   else:
#     if data:

#       return data

#     else:
#       data['StockInfo'] = {}
#       data['StockInfo']['Stock'] = {}
#       data['StockInfo']['Stock']['Name']  = ticker
#       data['StockInfo']['Stock']['Industry'] = Industry
#       data['StockInfo']['Stock']['Logo'] = logo
#       data['StockInfo']['Stock']['Status'] = "Waiting for entry"
#       entryStock_info = df.iloc[1: 2].reset_index(drop=True).to_dict(orient='records')[0] # Entry info
#       entryStock_info['Date'] = str(pd.to_datetime(df.at[1, 'Date']).strftime('%d-%m-%Y'))
#       data['StockInfo']['Stock']['Values'] = entryStock_info
#       data['StockInfo']['Stock']['Values']['Target3'] = "-"
#       data['StockInfo']['Info'] = "Don't buy stock right now...."

#       return data


# app = FastAPI()

# origins = ["*"]

# app.add_middleware(
#     CORSMiddleware,
#     allow_origins=origins,
#     allow_credentials=True,
#     allow_methods=["*"],
#     allow_headers=["*"],
# )

# @app.get('/')
# def index():
#     return {"message": "welcome to Investify"}

# # @app.post('/process_stock_details')
# # async def process_stock_details(request: Request):
# #     data = await request.json()
# #     processed_data = {
# #         'symbol': data['symbol'],
# #         'date': data['date'],
# #         'share': data['share']
# #     }
# #     return processed_data

# @app.get('/data')
# async def get_data(ticker: str, date: str, qty: int):
#     try:
#         response = await eqt(ticker, date, qty)
#         return response
#     except:
#         return {"Timeout" : "Error"}
        

# # @app.post('/data')
# # async def post_data(request: Request):
# #     data = await request.json()
# #     ticker = data.get('ticker')
# #     date = data.get('date')
# #     share_qty = data.get('qty')
# #     response = data_manager.get_equity_data(ticker, date, share_qty)
# #     return response
    
# # if __name__ == "__main__":
# #     import uvicorn
# #     uvicorn.run(app, host="0.0.0.0", port=8000)