Metadata-Version: 2.2 Name: torchmetrics Version: 1.6.2 Summary: PyTorch native Metrics Home-page: https://github.com/Lightning-AI/torchmetrics Download-URL: https://github.com/Lightning-AI/torchmetrics/archive/master.zip Author: Lightning-AI et al. Author-email: name@pytorchlightning.ai License: Apache-2.0 Project-URL: Bug Tracker, https://github.com/Lightning-AI/torchmetrics/issues Project-URL: Documentation, https://torchmetrics.rtfd.io/en/latest/ Project-URL: Source Code, https://github.com/Lightning-AI/torchmetrics Keywords: deep learning,machine learning,pytorch,metrics,AI Classifier: Environment :: Console Classifier: Natural Language :: English Classifier: Development Status :: 5 - Production/Stable Classifier: Intended Audience :: Developers Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence Classifier: Topic :: Scientific/Engineering :: Image Recognition Classifier: Topic :: Scientific/Engineering :: Information Analysis Classifier: License :: OSI Approved :: Apache Software License Classifier: Operating System :: OS Independent Classifier: Programming Language :: Python :: 3 Classifier: Programming Language :: Python :: 3.8 Classifier: Programming Language :: Python :: 3.9 Classifier: Programming Language :: Python :: 3.10 Classifier: Programming Language :: Python :: 3.11 Classifier: Programming Language :: Python :: 3.12 Requires-Python: >=3.9 Description-Content-Type: text/markdown License-File: LICENSE Requires-Dist: numpy>1.20.0 Requires-Dist: packaging>17.1 Requires-Dist: torch>=2.0.0 Requires-Dist: lightning-utilities>=0.8.0 Provides-Extra: audio Requires-Dist: torchaudio>=2.0.1; extra == "audio" Requires-Dist: onnxruntime>=1.12.0; extra == "audio" Requires-Dist: librosa>=0.10.0; extra == "audio" Requires-Dist: requests>=2.19.0; extra == "audio" Requires-Dist: pystoi>=0.4.0; extra == "audio" Requires-Dist: pesq>=0.0.4; extra == "audio" Requires-Dist: gammatone>=1.0.0; extra == "audio" Provides-Extra: debug Provides-Extra: detection Requires-Dist: pycocotools>2.0.0; extra == "detection" Requires-Dist: torchvision>=0.15.1; extra == "detection" Provides-Extra: image Requires-Dist: scipy>1.0.0; extra == "image" Requires-Dist: torch-fidelity<=0.4.0; extra == "image" Requires-Dist: torchvision>=0.15.1; extra == "image" Provides-Extra: integrate Provides-Extra: multimodal Requires-Dist: transformers>=4.42.3; extra == "multimodal" Requires-Dist: piq<=0.8.0; extra == "multimodal" Provides-Extra: text Requires-Dist: tqdm<4.68.0; extra == "text" Requires-Dist: regex>=2021.9.24; extra == "text" Requires-Dist: transformers>4.4.0; extra == "text" Requires-Dist: nltk>3.8.1; extra == "text" Requires-Dist: ipadic>=1.0.0; extra == "text" Requires-Dist: sentencepiece>=0.2.0; extra == "text" Requires-Dist: mecab-python3>=1.0.6; extra == "text" Provides-Extra: typing Requires-Dist: types-requests; extra == "typing" Requires-Dist: torch==2.6.0; extra == "typing" Requires-Dist: types-six; extra == "typing" Requires-Dist: types-protobuf; extra == "typing" Requires-Dist: types-tabulate; extra == "typing" Requires-Dist: types-emoji; extra == "typing" Requires-Dist: types-setuptools; extra == "typing" Requires-Dist: mypy==1.15.0; extra == "typing" Requires-Dist: types-PyYAML; extra == "typing" Provides-Extra: visual Requires-Dist: matplotlib>=3.6.0; extra == "visual" Requires-Dist: SciencePlots>=2.0.0; extra == "visual" Provides-Extra: all Requires-Dist: torchaudio>=2.0.1; extra == "all" Requires-Dist: onnxruntime>=1.12.0; extra == "all" Requires-Dist: librosa>=0.10.0; extra == "all" Requires-Dist: requests>=2.19.0; extra == "all" Requires-Dist: pystoi>=0.4.0; extra == "all" Requires-Dist: pesq>=0.0.4; extra == "all" Requires-Dist: gammatone>=1.0.0; extra == "all" Requires-Dist: pycocotools>2.0.0; extra == "all" Requires-Dist: torchvision>=0.15.1; extra == "all" Requires-Dist: scipy>1.0.0; extra == "all" Requires-Dist: torch-fidelity<=0.4.0; extra == "all" Requires-Dist: torchvision>=0.15.1; extra == "all" Requires-Dist: transformers>=4.42.3; extra == "all" Requires-Dist: piq<=0.8.0; extra == "all" Requires-Dist: tqdm<4.68.0; extra == "all" Requires-Dist: regex>=2021.9.24; extra == "all" Requires-Dist: transformers>4.4.0; extra == "all" Requires-Dist: nltk>3.8.1; extra == "all" Requires-Dist: ipadic>=1.0.0; extra == "all" Requires-Dist: sentencepiece>=0.2.0; extra == "all" Requires-Dist: mecab-python3>=1.0.6; extra == "all" Requires-Dist: types-requests; extra == "all" Requires-Dist: torch==2.6.0; extra == "all" Requires-Dist: types-six; extra == "all" Requires-Dist: types-protobuf; extra == "all" Requires-Dist: types-tabulate; extra == "all" Requires-Dist: types-emoji; extra == "all" Requires-Dist: types-setuptools; extra == "all" Requires-Dist: mypy==1.15.0; extra == "all" Requires-Dist: types-PyYAML; extra == "all" Requires-Dist: matplotlib>=3.6.0; extra == "all" Requires-Dist: SciencePlots>=2.0.0; extra == "all" Provides-Extra: dev Requires-Dist: torchaudio>=2.0.1; extra == "dev" Requires-Dist: onnxruntime>=1.12.0; extra == "dev" Requires-Dist: librosa>=0.10.0; extra == "dev" Requires-Dist: requests>=2.19.0; extra == "dev" Requires-Dist: pystoi>=0.4.0; extra == "dev" Requires-Dist: pesq>=0.0.4; extra == "dev" Requires-Dist: gammatone>=1.0.0; extra == "dev" Requires-Dist: pycocotools>2.0.0; extra == "dev" Requires-Dist: torchvision>=0.15.1; extra == "dev" Requires-Dist: scipy>1.0.0; extra == "dev" Requires-Dist: torch-fidelity<=0.4.0; extra == "dev" Requires-Dist: torchvision>=0.15.1; extra == "dev" Requires-Dist: transformers>=4.42.3; extra == "dev" Requires-Dist: piq<=0.8.0; extra == "dev" Requires-Dist: tqdm<4.68.0; extra == "dev" Requires-Dist: regex>=2021.9.24; extra == "dev" Requires-Dist: transformers>4.4.0; extra == "dev" Requires-Dist: nltk>3.8.1; extra == "dev" Requires-Dist: ipadic>=1.0.0; extra == "dev" Requires-Dist: sentencepiece>=0.2.0; extra == "dev" Requires-Dist: mecab-python3>=1.0.6; extra == "dev" Requires-Dist: types-requests; extra == "dev" Requires-Dist: torch==2.6.0; extra == "dev" Requires-Dist: types-six; extra == "dev" Requires-Dist: types-protobuf; extra == "dev" Requires-Dist: types-tabulate; extra == "dev" Requires-Dist: types-emoji; extra == "dev" Requires-Dist: types-setuptools; extra == "dev" Requires-Dist: mypy==1.15.0; extra == "dev" Requires-Dist: types-PyYAML; extra == "dev" Requires-Dist: matplotlib>=3.6.0; extra == "dev" Requires-Dist: SciencePlots>=2.0.0; extra == "dev" Requires-Dist: lpips<=0.1.4; extra == "dev" Requires-Dist: scipy>1.0.0; extra == "dev" Requires-Dist: mecab-ko-dic>=1.0.0; python_version < "3.12" and extra == "dev" Requires-Dist: scikit-image>=0.19.0; extra == "dev" Requires-Dist: pandas>1.4.0; extra == "dev" Requires-Dist: huggingface-hub<0.30; extra == "dev" Requires-Dist: bert_score==0.3.13; extra == "dev" Requires-Dist: fast-bss-eval>=0.1.0; extra == "dev" Requires-Dist: permetrics==2.0.0; extra == "dev" Requires-Dist: dython==0.7.9; extra == "dev" Requires-Dist: statsmodels>0.13.5; extra == "dev" Requires-Dist: pytorch-msssim==1.0.0; extra == "dev" Requires-Dist: PyTDC==0.4.1; python_version < "3.12" and extra == "dev" Requires-Dist: sacrebleu>=2.3.0; extra == "dev" Requires-Dist: monai==1.4.0; extra == "dev" Requires-Dist: faster-coco-eval>=1.6.3; extra == "dev" Requires-Dist: mecab-ko<1.1.0,>=1.0.0; python_version < "3.12" and extra == "dev" Requires-Dist: jiwer>=2.3.0; extra == "dev" Requires-Dist: torch_complex<0.5.0; extra == "dev" Requires-Dist: fairlearn; extra == "dev" Requires-Dist: netcal>1.0.0; extra == "dev" Requires-Dist: kornia>=0.6.7; extra == "dev" Requires-Dist: mir-eval>=0.6; extra == "dev" Requires-Dist: numpy<2.3.0; extra == "dev" Requires-Dist: sewar>=0.4.4; extra == "dev" Requires-Dist: rouge-score>0.1.0; extra == "dev" Dynamic: author Dynamic: author-email Dynamic: classifier Dynamic: description Dynamic: description-content-type Dynamic: download-url Dynamic: home-page Dynamic: keywords Dynamic: license Dynamic: project-url Dynamic: provides-extra Dynamic: requires-dist Dynamic: requires-python Dynamic: summary
**Machine learning metrics for distributed, scalable PyTorch applications.** ______________________________________________________________________

What is TorchmetricsImplementing a metricBuilt-in metricsDocsCommunityLicense

______________________________________________________________________ [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/torchmetrics)](https://pypi.org/project/torchmetrics/) [![PyPI Status](https://badge.fury.io/py/torchmetrics.svg)](https://badge.fury.io/py/torchmetrics) [![PyPI - Downloads](https://img.shields.io/pypi/dm/torchmetrics) ](https://pepy.tech/project/torchmetrics) [![Conda](https://img.shields.io/conda/v/conda-forge/torchmetrics?label=conda&color=success)](https://anaconda.org/conda-forge/torchmetrics) [![license](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://github.com/Lightning-AI/torchmetrics/blob/master/LICENSE) [![CI testing | CPU](https://github.com/Lightning-AI/torchmetrics/actions/workflows/ci-tests.yml/badge.svg?event=push)](https://github.com/Lightning-AI/torchmetrics/actions/workflows/ci-tests.yml) [![Build Status](https://dev.azure.com/Lightning-AI/Metrics/_apis/build/status%2FTM.unittests?branchName=refs%2Ftags%2Fv1.6.2)](https://dev.azure.com/Lightning-AI/Metrics/_build/latest?definitionId=2&branchName=refs%2Ftags%2Fv1.6.2) [![codecov](https://codecov.io/gh/Lightning-AI/torchmetrics/release/v1.6.2/graph/badge.svg?token=NER6LPI3HS)](https://codecov.io/gh/Lightning-AI/torchmetrics) [![pre-commit.ci status](https://results.pre-commit.ci/badge/github/Lightning-AI/torchmetrics/master.svg)](https://results.pre-commit.ci/latest/github/Lightning-AI/torchmetrics/master) [![Documentation Status](https://readthedocs.org/projects/torchmetrics/badge/?version=latest)](https://torchmetrics.readthedocs.io/en/latest/?badge=latest) [![Discord](https://img.shields.io/discord/1077906959069626439?style=plastic)](https://discord.gg/VptPCZkGNa) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.5844769.svg)](https://doi.org/10.5281/zenodo.5844769) [![JOSS status](https://joss.theoj.org/papers/561d9bb59b400158bc8204e2639dca43/status.svg)](https://joss.theoj.org/papers/561d9bb59b400158bc8204e2639dca43) ______________________________________________________________________
## Installation Simple installation from PyPI ```bash pip install torchmetrics ```
Other installations Install using conda ```bash conda install -c conda-forge torchmetrics ``` Pip from source ```bash # with git pip install git+https://github.com/Lightning-AI/torchmetrics.git@release/stable ``` Pip from archive ```bash pip install https://github.com/Lightning-AI/torchmetrics/archive/refs/heads/release/stable.zip ``` Extra dependencies for specialized metrics: ```bash pip install torchmetrics[audio] pip install torchmetrics[image] pip install torchmetrics[text] pip install torchmetrics[all] # install all of the above ``` Install latest developer version ```bash pip install https://github.com/Lightning-AI/torchmetrics/archive/master.zip ```
______________________________________________________________________ ## What is TorchMetrics TorchMetrics is a collection of 100+ PyTorch metrics implementations and an easy-to-use API to create custom metrics. It offers: - A standardized interface to increase reproducibility - Reduces boilerplate - Automatic accumulation over batches - Metrics optimized for distributed-training - Automatic synchronization between multiple devices You can use TorchMetrics with any PyTorch model or with [PyTorch Lightning](https://lightning.ai/docs/pytorch/stable/) to enjoy additional features such as: - Module metrics are automatically placed on the correct device. - Native support for logging metrics in Lightning to reduce even more boilerplate. ## Using TorchMetrics ### Module metrics The [module-based metrics](https://lightning.ai/docs/torchmetrics/stable/references/metric.html) contain internal metric states (similar to the parameters of the PyTorch module) that automate accumulation and synchronization across devices! - Automatic accumulation over multiple batches - Automatic synchronization between multiple devices - Metric arithmetic **This can be run on CPU, single GPU or multi-GPUs!** For the single GPU/CPU case: ```python import torch # import our library import torchmetrics # initialize metric metric = torchmetrics.classification.Accuracy(task="multiclass", num_classes=5) # move the metric to device you want computations to take place device = "cuda" if torch.cuda.is_available() else "cpu" metric.to(device) n_batches = 10 for i in range(n_batches): # simulate a classification problem preds = torch.randn(10, 5).softmax(dim=-1).to(device) target = torch.randint(5, (10,)).to(device) # metric on current batch acc = metric(preds, target) print(f"Accuracy on batch {i}: {acc}") # metric on all batches using custom accumulation acc = metric.compute() print(f"Accuracy on all data: {acc}") ``` Module metric usage remains the same when using multiple GPUs or multiple nodes.
Example using DDP ```python import os import torch import torch.distributed as dist import torch.multiprocessing as mp from torch import nn from torch.nn.parallel import DistributedDataParallel as DDP import torchmetrics def metric_ddp(rank, world_size): os.environ["MASTER_ADDR"] = "localhost" os.environ["MASTER_PORT"] = "12355" # create default process group dist.init_process_group("gloo", rank=rank, world_size=world_size) # initialize model metric = torchmetrics.classification.Accuracy(task="multiclass", num_classes=5) # define a model and append your metric to it # this allows metric states to be placed on correct accelerators when # .to(device) is called on the model model = nn.Linear(10, 10) model.metric = metric model = model.to(rank) # initialize DDP model = DDP(model, device_ids=[rank]) n_epochs = 5 # this shows iteration over multiple training epochs for n in range(n_epochs): # this will be replaced by a DataLoader with a DistributedSampler n_batches = 10 for i in range(n_batches): # simulate a classification problem preds = torch.randn(10, 5).softmax(dim=-1) target = torch.randint(5, (10,)) # metric on current batch acc = metric(preds, target) if rank == 0: # print only for rank 0 print(f"Accuracy on batch {i}: {acc}") # metric on all batches and all accelerators using custom accumulation # accuracy is same across both accelerators acc = metric.compute() print(f"Accuracy on all data: {acc}, accelerator rank: {rank}") # Resetting internal state such that metric ready for new data metric.reset() # cleanup dist.destroy_process_group() if __name__ == "__main__": world_size = 2 # number of gpus to parallelize over mp.spawn(metric_ddp, args=(world_size,), nprocs=world_size, join=True) ```
### Implementing your own Module metric Implementing your own metric is as easy as subclassing an [`torch.nn.Module`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html). Simply, subclass `torchmetrics.Metric` and just implement the `update` and `compute` methods: ```python import torch from torchmetrics import Metric class MyAccuracy(Metric): def __init__(self): # remember to call super super().__init__() # call `self.add_state`for every internal state that is needed for the metrics computations # dist_reduce_fx indicates the function that should be used to reduce # state from multiple processes self.add_state("correct", default=torch.tensor(0), dist_reduce_fx="sum") self.add_state("total", default=torch.tensor(0), dist_reduce_fx="sum") def update(self, preds: torch.Tensor, target: torch.Tensor) -> None: # extract predicted class index for computing accuracy preds = preds.argmax(dim=-1) assert preds.shape == target.shape # update metric states self.correct += torch.sum(preds == target) self.total += target.numel() def compute(self) -> torch.Tensor: # compute final result return self.correct.float() / self.total my_metric = MyAccuracy() preds = torch.randn(10, 5).softmax(dim=-1) target = torch.randint(5, (10,)) print(my_metric(preds, target)) ``` ### Functional metrics Similar to [`torch.nn`](https://pytorch.org/docs/stable/nn.html), most metrics have both a [module-based](https://lightning.ai/docs/torchmetrics/stable/references/metric.html) and functional version. The functional versions are simple python functions that as input take [torch.tensors](https://pytorch.org/docs/stable/tensors.html) and return the corresponding metric as a [torch.tensor](https://pytorch.org/docs/stable/tensors.html). ```python import torch # import our library import torchmetrics # simulate a classification problem preds = torch.randn(10, 5).softmax(dim=-1) target = torch.randint(5, (10,)) acc = torchmetrics.functional.classification.multiclass_accuracy( preds, target, num_classes=5 ) ``` ### Covered domains and example metrics In total TorchMetrics contains [100+ metrics](https://lightning.ai/docs/torchmetrics/stable/all-metrics.html), which covers the following domains: - Audio - Classification - Detection - Information Retrieval - Image - Multimodal (Image-Text) - Nominal - Regression - Segmentation - Text Each domain may require some additional dependencies which can be installed with `pip install torchmetrics[audio]`, `pip install torchmetrics['image']` etc. ### Additional features #### Plotting Visualization of metrics can be important to help understand what is going on with your machine learning algorithms. Torchmetrics have built-in plotting support (install dependencies with `pip install torchmetrics[visual]`) for nearly all modular metrics through the `.plot` method. Simply call the method to get a simple visualization of any metric! ```python import torch from torchmetrics.classification import MulticlassAccuracy, MulticlassConfusionMatrix num_classes = 3 # this will generate two distributions that comes more similar as iterations increase w = torch.randn(num_classes) target = lambda it: torch.multinomial((it * w).softmax(dim=-1), 100, replacement=True) preds = lambda it: torch.multinomial((it * w).softmax(dim=-1), 100, replacement=True) acc = MulticlassAccuracy(num_classes=num_classes, average="micro") acc_per_class = MulticlassAccuracy(num_classes=num_classes, average=None) confmat = MulticlassConfusionMatrix(num_classes=num_classes) # plot single value for i in range(5): acc_per_class.update(preds(i), target(i)) confmat.update(preds(i), target(i)) fig1, ax1 = acc_per_class.plot() fig2, ax2 = confmat.plot() # plot multiple values values = [] for i in range(10): values.append(acc(preds(i), target(i))) fig3, ax3 = acc.plot(values) ```

For examples of plotting different metrics try running [this example file](_samples/plotting.py). ## Contribute! The lightning + TorchMetrics team is hard at work adding even more metrics. But we're looking for incredible contributors like you to submit new metrics and improve existing ones! Join our [Discord](https://discord.com/invite/tfXFetEZxv) to get help with becoming a contributor! ## Community For help or questions, join our huge community on [Discord](https://discord.com/invite/tfXFetEZxv)! ## Citation We’re excited to continue the strong legacy of open source software and have been inspired over the years by Caffe, Theano, Keras, PyTorch, torchbearer, ignite, sklearn and fast.ai. If you want to cite this framework feel free to use GitHub's built-in citation option to generate a bibtex or APA-Style citation based on [this file](https://github.com/Lightning-AI/torchmetrics/blob/master/CITATION.cff) (but only if you loved it 😊). ## License Please observe the Apache 2.0 license that is listed in this repository. In addition, the Lightning framework is Patent Pending.