from __future__ import annotations import base64 import warnings from io import BytesIO from pathlib import Path from typing import Literal, cast from urllib.parse import quote import httpx import numpy as np import PIL.Image from gradio_client.utils import get_mimetype, is_http_url_like from PIL import ImageOps from gradio import processing_utils from gradio.data_classes import ImageData from gradio.exceptions import Error PIL.Image.init() # fixes https://github.com/gradio-app/gradio/issues/2843 (remove when requiring Pillow 9.4+) def format_image( im: PIL.Image.Image | None, type: Literal["numpy", "pil", "filepath"], cache_dir: str, name: str = "image", format: str = "webp", ) -> np.ndarray | PIL.Image.Image | str | None: """Helper method to format an image based on self.type""" if im is None: return im if type == "pil": return im elif type == "numpy": return np.array(im) elif type == "filepath": try: path = processing_utils.save_pil_to_cache( im, cache_dir=cache_dir, name=name, format=format ) # Catch error if format is not supported by PIL except (KeyError, ValueError): path = processing_utils.save_pil_to_cache( im, cache_dir=cache_dir, name=name, format="png", # type: ignore ) return path else: raise ValueError( "Unknown type: " + str(type) + ". Please choose from: 'numpy', 'pil', 'filepath'." ) def save_image( y: np.ndarray | PIL.Image.Image | str | Path, cache_dir: str, format: str = "webp" ): if isinstance(y, np.ndarray): path = processing_utils.save_img_array_to_cache( y, cache_dir=cache_dir, format=format ) elif isinstance(y, PIL.Image.Image): try: path = processing_utils.save_pil_to_cache( y, cache_dir=cache_dir, format=format ) # Catch error if format is not supported by PIL except (KeyError, ValueError): path = processing_utils.save_pil_to_cache( y, cache_dir=cache_dir, format="png" ) elif isinstance(y, Path): path = str(y) elif isinstance(y, str): path = y else: raise ValueError( "Cannot process this value as an Image, it is of type: " + str(type(y)) ) return path def crop_scale(img: PIL.Image.Image, final_width: int, final_height: int): original_width, original_height = img.size target_aspect_ratio = final_width / final_height if original_width / original_height > target_aspect_ratio: crop_height = original_height crop_width = crop_height * target_aspect_ratio else: crop_width = original_width crop_height = crop_width / target_aspect_ratio left = (original_width - crop_width) / 2 top = (original_height - crop_height) / 2 img_cropped = img.crop( (int(left), int(top), int(left + crop_width), int(top + crop_height)) ) img_resized = img_cropped.resize((final_width, final_height)) return img_resized def decode_base64_to_image(encoding: str) -> PIL.Image.Image: image_encoded = processing_utils.extract_base64_data(encoding) img = PIL.Image.open(BytesIO(base64.b64decode(image_encoded))) try: if hasattr(ImageOps, "exif_transpose"): img = ImageOps.exif_transpose(img) except Exception: print( "Failed to transpose image %s based on EXIF data.", img, ) return cast(PIL.Image.Image, img) def decode_base64_to_image_array(encoding: str) -> np.ndarray: img = decode_base64_to_image(encoding) return np.asarray(img) def decode_base64_to_file(encoding: str, cache_dir: str, format: str = "webp") -> str: img = decode_base64_to_image(encoding) return save_image(img, cache_dir, format) def encode_image_array_to_base64(image_array: np.ndarray) -> str: with BytesIO() as output_bytes: pil_image = PIL.Image.fromarray( processing_utils._convert(image_array, np.uint8, force_copy=False) ) pil_image.save(output_bytes, "JPEG") bytes_data = output_bytes.getvalue() base64_str = str(base64.b64encode(bytes_data), "utf-8") return "data:image/jpeg;base64," + base64_str def encode_image_to_base64(image: PIL.Image.Image) -> str: with BytesIO() as output_bytes: image.save(output_bytes, "JPEG") bytes_data = output_bytes.getvalue() base64_str = str(base64.b64encode(bytes_data), "utf-8") return "data:image/jpeg;base64," + base64_str def encode_image_file_to_base64(image_file: str | Path) -> str: mime_type = get_mimetype(str(image_file)) with open(image_file, "rb") as f: bytes_data = f.read() base64_str = str(base64.b64encode(bytes_data), "utf-8") return f"data:{mime_type};base64," + base64_str def extract_svg_content(image_file: str | Path) -> str: """ Provided a path or URL to an SVG file, return the SVG content as a string. Parameters: image_file: Local file path or URL to an SVG file Returns: str: The SVG content as a string """ image_file = str(image_file) if is_http_url_like(image_file): response = httpx.get(image_file) response.raise_for_status() # Raise an error for bad status codes return response.text else: with open(image_file) as file: svg_content = file.read() return svg_content def preprocess_image( payload: ImageData | None, cache_dir: str, format: str, image_mode: Literal[ "1", "L", "P", "RGB", "RGBA", "CMYK", "YCbCr", "LAB", "HSV", "I", "F" ] | None, type: Literal["numpy", "pil", "filepath"], ) -> np.ndarray | PIL.Image.Image | str | None: if payload is None: return payload if payload.url and payload.url.startswith("data:"): if type == "pil": return decode_base64_to_image(payload.url) elif type == "numpy": return decode_base64_to_image_array(payload.url) elif type == "filepath": return decode_base64_to_file(payload.url, cache_dir, format) if payload.path is None: raise ValueError("Image path is None.") file_path = Path(payload.path) if payload.orig_name: p = Path(payload.orig_name) name = p.stem suffix = p.suffix.replace(".", "") if suffix in ["jpg", "jpeg"]: suffix = "jpeg" else: name = "image" suffix = "webp" if suffix.lower() == "svg": if type == "filepath": return str(file_path) raise Error("SVG files are not supported as input images for this app.") im = PIL.Image.open(file_path) if type == "filepath" and (image_mode in [None, im.mode]): return str(file_path) exif = im.getexif() # 274 is the code for image rotation and 1 means "correct orientation" if exif.get(274, 1) != 1 and hasattr(ImageOps, "exif_transpose"): try: im = ImageOps.exif_transpose(im) except Exception: warnings.warn(f"Failed to transpose image {file_path} based on EXIF data.") if suffix.lower() != "gif" and im is not None: with warnings.catch_warnings(): warnings.simplefilter("ignore") if image_mode is not None: im = im.convert(image_mode) return format_image( im, type=cast(Literal["numpy", "pil", "filepath"], type), cache_dir=cache_dir, name=name, format=suffix, ) def postprocess_image( value: np.ndarray | PIL.Image.Image | str | Path | None, cache_dir: str, format: str, ) -> ImageData | None: """ Parameters: value: Expects a `numpy.array`, `PIL.Image`, or `str` or `pathlib.Path` filepath to an image which is displayed. Returns: Returns the image as a `FileData` object. """ if value is None: return None if isinstance(value, str) and value.lower().endswith(".svg"): svg_content = extract_svg_content(value) return ImageData( orig_name=Path(value).name, url=f"data:image/svg+xml,{quote(svg_content)}", ) saved = save_image(value, cache_dir=cache_dir, format=format) orig_name = Path(saved).name if Path(saved).exists() else None return ImageData(path=saved, orig_name=orig_name)