import asyncio import copy import inspect import itertools import multiprocessing.pool import sys from collections import Counter from collections.abc import Iterable, Iterator from copy import deepcopy from dataclasses import dataclass from functools import partial from itertools import cycle, islice from typing import TYPE_CHECKING, Any, Callable, Optional, Union import fsspec.asyn import numpy as np import pandas as pd import pyarrow as pa from . import config from .arrow_dataset import Dataset, DatasetInfoMixin from .features import Features from .features.features import ( FeatureType, Value, _align_features, _check_if_features_can_be_aligned, _visit, cast_to_python_objects, ) from .formatting import ( ArrowFormatter, PythonFormatter, TableFormatter, TensorFormatter, get_format_type_from_alias, get_formatter, ) from .info import DatasetInfo from .splits import NamedSplit, Split from .table import cast_table_to_features, read_schema_from_file, table_cast from .utils.logging import get_logger from .utils.py_utils import Literal from .utils.sharding import _merge_gen_kwargs, _number_of_shards_in_gen_kwargs, _shuffle_gen_kwargs, _split_gen_kwargs if TYPE_CHECKING: import torch logger = get_logger(__name__) Key = Union[int, str] def identity_func(x): return x def _rename_columns_fn(example: dict, column_mapping: dict[str, str]): if any(col not in example for col in column_mapping): raise ValueError( f"Error when renaming {list(column_mapping)} to {list(column_mapping.values())}: columns {set(column_mapping) - set(example)} are not in the dataset." ) if any(col in example for col in column_mapping.values()): raise ValueError( f"Error when renaming {list(column_mapping)} to {list(column_mapping.values())}: columns {set(example) - set(column_mapping.values())} are already in the dataset." ) return { new_column_name: example[original_column_name] for original_column_name, new_column_name in column_mapping.items() } def add_column_fn(example: dict, idx: int, name: str, column: list[dict]): if name in example: raise ValueError(f"Error when adding {name}: column {name} is already in the dataset.") return {name: column[idx]} def _infer_features_from_batch(batch: dict[str, list], try_features: Optional[Features] = None) -> Features: pa_table = pa.Table.from_pydict(batch) if try_features is not None: try: pa_table = table_cast(pa_table, pa.schema(try_features.type)) except (TypeError, pa.ArrowInvalid, pa.ArrowNotImplementedError): pass return Features.from_arrow_schema(pa_table.schema) def _examples_to_batch(examples: list[dict[str, Any]]) -> dict[str, list]: # we order the columns by order of appearance # to do so, we use a dict as an ordered set cols = {col: None for example in examples for col in example} # when an example is missing a column, we set the value to None with .get() arrays = [[example.get(col) for example in examples] for col in cols] return dict(zip(cols, arrays)) def _batch_to_examples(batch: dict[str, list]) -> Iterator[dict[str, Any]]: """Convert a batch (dict of examples) to examples list""" n_examples = 0 if len(batch) == 0 else len(batch[next(iter(batch))]) for i in range(n_examples): yield {col: array[i] for col, array in batch.items()} def _convert_to_arrow( iterable: Iterable[tuple[Key, dict]], batch_size: int, drop_last_batch: bool = False, ) -> Iterator[tuple[Key, pa.Table]]: """Convert and group examples in Arrow tables of size `batch_size`. Args: iterable (`Iterable[Tuple[Key, dict]]`): An examples iterable containing tuples (example_key, example) of type (int/str, dict) batch_size (`Optional[int]`): Size of each sub-table to yield. If None or <= 0, yields the full table. drop_last_batch (`bool`, defaults to `False`): Drop the last batch if it is smaller than `batch_size`. """ if batch_size is None or batch_size <= 0: yield ( "all", pa.Table.from_pylist(cast_to_python_objects([example for _, example in iterable], only_1d_for_numpy=True)), ) return iterator = iter(iterable) for key, example in iterator: iterator_batch = islice(iterator, batch_size - 1) key_examples_list = [(key, example)] + list(iterator_batch) if len(key_examples_list) < batch_size and drop_last_batch: return keys, examples = zip(*key_examples_list) new_key = "_".join(str(key) for key in keys) yield new_key, pa.Table.from_pylist(cast_to_python_objects(examples, only_1d_for_numpy=True)) class _BaseExamplesIterable: """Base class for the examples iterable used by an IterableDataset""" def __init__(self) -> None: self._state_dict: Optional[Union[list, dict]] = None def __iter__(self) -> Iterator[tuple[Key, dict]]: """An examples iterable should yield tuples (example_key, example) of type (int/str, dict)""" raise NotImplementedError(f"{type(self)} doesn't implement __iter__ yet") @property def iter_arrow(self) -> Optional[Callable[[], Iterator[tuple[Key, pa.Table]]]]: return None @property def is_typed(self) -> bool: return False @property def features(self) -> Optional[Features]: return None def shuffle_data_sources(self, generator: np.random.Generator) -> "_BaseExamplesIterable": """ Either shuffle the shards/sources of the dataset, or propagate the shuffling to the underlying iterable. If the order of the shards must stay fixed (when using .skip or .take for example), then this method returns self. """ raise NotImplementedError(f"{type(self)} doesn't implement shuffle_data_sources yet") def shard_data_sources(self, num_shards: int, index: int, contiguous=True) -> "_BaseExamplesIterable": """Either keep only the requested shard, or propagate the request to the underlying iterable.""" raise NotImplementedError(f"{type(self)} doesn't implement shard_data_sources yet") def split_shard_indices_by_worker(self, num_shards: int, index: int, contiguous=True) -> list[int]: if contiguous: div = self.num_shards // num_shards mod = self.num_shards % num_shards start = div * index + min(index, mod) end = start + div + (1 if index < mod else 0) return list(range(start, end)) else: return list(range(index, self.num_shards, num_shards)) @property def num_shards(self) -> int: raise NotImplementedError(f"{type(self)} doesn't implement num_shards yet") def _init_state_dict(self) -> dict: raise NotImplementedError(f"{type(self)} doesn't implement _init_state_dict yet") def load_state_dict(self, state_dict: dict) -> dict: def _inner_load_state_dict(state, new_state): if new_state is not None and isinstance(state, dict): for key in new_state: state[key] = _inner_load_state_dict(state[key], new_state[key]) return state elif new_state is not None and isinstance(state, list): for i in range(len(state)): state[i] = _inner_load_state_dict(state[i], new_state[i]) return state return new_state return _inner_load_state_dict(self._state_dict, state_dict) def state_dict(self) -> dict: if self._state_dict: return copy.deepcopy(self._state_dict) raise RuntimeError("State dict is not initialized, please call ex_iterable._init_state_dict() first.") class ExamplesIterable(_BaseExamplesIterable): def __init__(self, generate_examples_fn: Callable[..., tuple[Key, dict]], kwargs: dict): super().__init__() self.generate_examples_fn = generate_examples_fn self.kwargs = kwargs def _init_state_dict(self) -> dict: self._state_dict = {"shard_idx": 0, "shard_example_idx": 0, "type": self.__class__.__name__} return self._state_dict def __iter__(self): shard_idx_start = self._state_dict["shard_idx"] if self._state_dict else 0 for gen_kwags in islice(_split_gen_kwargs(self.kwargs, max_num_jobs=self.num_shards), shard_idx_start, None): shard_example_idx_start = self._state_dict["shard_example_idx"] if self._state_dict else 0 for key_example in islice(self.generate_examples_fn(**gen_kwags), shard_example_idx_start, None): if self._state_dict: self._state_dict["shard_example_idx"] += 1 yield key_example if self._state_dict: self._state_dict["shard_idx"] += 1 self._state_dict["shard_example_idx"] = 0 def shuffle_data_sources(self, generator: np.random.Generator) -> "ExamplesIterable": return ShuffledDataSourcesExamplesIterable(self.generate_examples_fn, self.kwargs, generator) def shard_data_sources(self, num_shards: int, index: int, contiguous=True) -> "ExamplesIterable": """Keep only the requested shard.""" gen_kwargs_list = _split_gen_kwargs(self.kwargs, max_num_jobs=self.num_shards) shard_indices = self.split_shard_indices_by_worker(num_shards, index, contiguous=contiguous) requested_gen_kwargs = _merge_gen_kwargs([gen_kwargs_list[i] for i in shard_indices]) return ExamplesIterable(self.generate_examples_fn, requested_gen_kwargs) @property def num_shards(self) -> int: return _number_of_shards_in_gen_kwargs(self.kwargs) class ShuffledDataSourcesExamplesIterable(ExamplesIterable): def __init__( self, generate_examples_fn: Callable[..., tuple[Key, dict]], kwargs: dict, generator: np.random.Generator ): super().__init__(generate_examples_fn, kwargs) self.generator = deepcopy(generator) def _init_state_dict(self) -> dict: self._state_dict = {"shard_idx": 0, "shard_example_idx": 0, "type": self.__class__.__name__} return self._state_dict def __iter__(self): """Shuffle the kwargs order to shuffle shards""" rng = deepcopy(self.generator) kwargs_with_shuffled_shards = _shuffle_gen_kwargs(rng, self.kwargs) shard_idx_start = self._state_dict["shard_idx"] if self._state_dict else 0 for gen_kwags in islice( _split_gen_kwargs(kwargs_with_shuffled_shards, max_num_jobs=self.num_shards), shard_idx_start, None ): shard_example_idx_start = self._state_dict["shard_example_idx"] if self._state_dict else 0 for key_example in islice(self.generate_examples_fn(**gen_kwags), shard_example_idx_start, None): if self._state_dict: self._state_dict["shard_example_idx"] += 1 yield key_example if self._state_dict: self._state_dict["shard_idx"] += 1 self._state_dict["shard_example_idx"] = 0 def shard_data_sources(self, num_shards: int, index: int, contiguous=True) -> "ExamplesIterable": """Keep only the requested shard.""" rng = deepcopy(self.generator) kwargs_with_shuffled_shards = _shuffle_gen_kwargs(rng, self.kwargs) return ExamplesIterable(self.generate_examples_fn, kwargs_with_shuffled_shards).shard_data_sources( num_shards, index, contiguous=contiguous ) class ArrowExamplesIterable(_BaseExamplesIterable): def __init__(self, generate_tables_fn: Callable[..., tuple[Key, pa.Table]], kwargs: dict): super().__init__() self.generate_tables_fn = generate_tables_fn self.kwargs = kwargs @property def iter_arrow(self): return self._iter_arrow def _init_state_dict(self) -> dict: self._state_dict = {"shard_idx": 0, "shard_example_idx": 0, "type": self.__class__.__name__} return self._state_dict def __iter__(self): formatter = PythonFormatter() shard_idx_start = self._state_dict["shard_idx"] if self._state_dict else 0 for gen_kwags in islice(_split_gen_kwargs(self.kwargs, max_num_jobs=self.num_shards), shard_idx_start, None): shard_example_idx_start = self._state_dict["shard_example_idx"] if self._state_dict else 0 shard_example_idx = 0 for key, pa_table in self.generate_tables_fn(**gen_kwags): if shard_example_idx + len(pa_table) <= shard_example_idx_start: shard_example_idx += len(pa_table) continue for pa_subtable in pa_table.to_reader(max_chunksize=config.ARROW_READER_BATCH_SIZE_IN_DATASET_ITER): formatted_batch = formatter.format_batch(pa_subtable) for example in _batch_to_examples(formatted_batch): if shard_example_idx >= shard_example_idx_start: if self._state_dict: self._state_dict["shard_example_idx"] += 1 yield key, example shard_example_idx += 1 if self._state_dict: self._state_dict["shard_idx"] += 1 self._state_dict["shard_example_idx"] = 0 def _iter_arrow(self): shard_idx_start = self._state_dict["shard_idx"] if self._state_dict else 0 for gen_kwags in islice(_split_gen_kwargs(self.kwargs, max_num_jobs=self.num_shards), shard_idx_start, None): shard_example_idx_start = self._state_dict["shard_example_idx"] if self._state_dict else 0 shard_example_idx = 0 for key, pa_table in self.generate_tables_fn(**gen_kwags): shard_example_idx += len(pa_table) if shard_example_idx <= shard_example_idx_start: continue if self._state_dict: self._state_dict["shard_example_idx"] += len(pa_table) yield key, pa_table if self._state_dict: self._state_dict["shard_idx"] += 1 self._state_dict["shard_example_idx"] = 0 def shuffle_data_sources(self, generator: np.random.Generator) -> "ArrowExamplesIterable": return ShuffledDataSourcesArrowExamplesIterable(self.generate_tables_fn, self.kwargs, generator) def shard_data_sources(self, num_shards: int, index: int, contiguous=True) -> "ArrowExamplesIterable": """Keep only the requested shard.""" gen_kwargs_list = _split_gen_kwargs(self.kwargs, max_num_jobs=self.num_shards) shard_indices = self.split_shard_indices_by_worker(num_shards, index, contiguous=contiguous) requested_gen_kwargs = _merge_gen_kwargs([gen_kwargs_list[i] for i in shard_indices]) return ArrowExamplesIterable(self.generate_tables_fn, requested_gen_kwargs) @property def num_shards(self) -> int: return _number_of_shards_in_gen_kwargs(self.kwargs) class ShuffledDataSourcesArrowExamplesIterable(ArrowExamplesIterable): def __init__( self, generate_tables_fn: Callable[..., tuple[Key, pa.Table]], kwargs: dict, generator: np.random.Generator, ): super().__init__(generate_tables_fn, kwargs) self.generator = deepcopy(generator) def _init_state_dict(self) -> dict: self._state_dict = {"shard_idx": 0, "shard_example_idx": 0, "type": self.__class__.__name__} return self._state_dict def __iter__(self): """Shuffle the kwargs order to shuffle shards""" rng = deepcopy(self.generator) kwargs_with_shuffled_shards = _shuffle_gen_kwargs(rng, self.kwargs) formatter = PythonFormatter() shard_idx_start = self._state_dict["shard_idx"] if self._state_dict else 0 for gen_kwags in islice( _split_gen_kwargs(kwargs_with_shuffled_shards, max_num_jobs=self.num_shards), shard_idx_start, None ): shard_example_idx_start = self._state_dict["shard_example_idx"] if self._state_dict else 0 shard_example_idx = 0 for key, pa_table in self.generate_tables_fn(**gen_kwags): if shard_example_idx + len(pa_table) <= shard_example_idx_start: shard_example_idx += len(pa_table) continue for pa_subtable in pa_table.to_reader(max_chunksize=config.ARROW_READER_BATCH_SIZE_IN_DATASET_ITER): formatted_batch = formatter.format_batch(pa_subtable) for example in _batch_to_examples(formatted_batch): if shard_example_idx >= shard_example_idx_start: if self._state_dict: self._state_dict["shard_example_idx"] += 1 yield key, example shard_example_idx += 1 if self._state_dict: self._state_dict["shard_idx"] += 1 self._state_dict["shard_example_idx"] = 0 def _iter_arrow(self): rng = deepcopy(self.generator) kwargs_with_shuffled_shards = _shuffle_gen_kwargs(rng, self.kwargs) shard_idx_start = self._state_dict["shard_idx"] if self._state_dict else 0 for gen_kwags in islice( _split_gen_kwargs(kwargs_with_shuffled_shards, max_num_jobs=self.num_shards), shard_idx_start, None ): shard_example_idx_start = self._state_dict["shard_example_idx"] if self._state_dict else 0 shard_example_idx = 0 for key, pa_table in self.generate_tables_fn(**gen_kwags): shard_example_idx += len(pa_table) if shard_example_idx <= shard_example_idx_start: continue if self._state_dict: self._state_dict["shard_example_idx"] += len(pa_table) yield key, pa_table if self._state_dict: self._state_dict["shard_idx"] += 1 self._state_dict["shard_example_idx"] = 0 def shard_data_sources(self, num_shards: int, index: int, contiguous=True) -> "ArrowExamplesIterable": """Keep only the requested shard.""" rng = deepcopy(self.generator) kwargs_with_shuffled_shards = _shuffle_gen_kwargs(rng, self.kwargs) return ArrowExamplesIterable(self.generate_tables_fn, kwargs_with_shuffled_shards).shard_data_sources( num_shards, index, contiguous=contiguous ) class RebatchedArrowExamplesIterable(_BaseExamplesIterable): def __init__(self, ex_iterable: _BaseExamplesIterable, batch_size: Optional[int], drop_last_batch: bool = False): super().__init__() self.ex_iterable = ex_iterable self.batch_size = batch_size self.drop_last_batch = drop_last_batch @property def iter_arrow(self): return self._iter_arrow @property def is_typed(self): return self.ex_iterable.is_typed @property def features(self): return self.ex_iterable.features def _init_state_dict(self) -> dict: self._state_dict = { "examples_iterable": self.ex_iterable._init_state_dict(), "previous_state": None, "batch_idx": 0, "num_chunks_since_previous_state": 0, "cropped_chunk_length": 0, "type": self.__class__.__name__, } return self._state_dict def __iter__(self): yield from self.ex_iterable def _iter_arrow(self) -> Iterator[tuple[Key, pa.Table]]: """Iterate over sub-tables of size `batch_size`.""" if self._state_dict and self._state_dict["previous_state"]: self.ex_iterable.load_state_dict(self._state_dict["previous_state"]) if self.ex_iterable.iter_arrow: iterator = self.ex_iterable.iter_arrow() else: iterator = _convert_to_arrow(self.ex_iterable, batch_size=1) if self.batch_size is None or self.batch_size <= 0: if self._state_dict and self._state_dict["batch_idx"] > 0: return all_pa_table = pa.concat_tables([pa_table for _, pa_table in iterator]) if self._state_dict: self._state_dict["batch_idx"] = 1 yield "all", all_pa_table return keys_buffer = [] chunks_buffer = [] chunks_buffer_size = 0 num_chunks_to_skip = self._state_dict["num_chunks_since_previous_state"] if self._state_dict else 0 chunk_length_to_crop = self._state_dict["cropped_chunk_length"] if self._state_dict else 0 if self._state_dict: previous_state = self.ex_iterable.state_dict() self._state_dict["previous_state"] = previous_state for key, pa_table in iterator: for num_chunks_since_previous_state, chunk in enumerate(pa_table.to_reader(max_chunksize=self.batch_size)): if num_chunks_to_skip > 1: num_chunks_to_skip -= 1 continue elif num_chunks_to_skip == 1 and chunk_length_to_crop == 0: num_chunks_to_skip -= 1 continue elif num_chunks_to_skip == 1 and chunk_length_to_crop > 0: chunk = chunk.slice(chunk_length_to_crop, len(chunk) - chunk_length_to_crop) num_chunks_to_skip = 0 chunk_length_to_crop = 0 if len(chunk) == 0: continue if chunks_buffer_size + len(chunk) < self.batch_size: keys_buffer.append(key) chunks_buffer.append(chunk) chunks_buffer_size += len(chunk) continue elif chunks_buffer_size + len(chunk) == self.batch_size: keys_buffer.append(key) chunks_buffer.append(chunk) new_key = "_".join(str(_key) for _key in keys_buffer) if self._state_dict: self._state_dict["batch_idx"] += 1 self._state_dict["num_chunks_since_previous_state"] += len(chunks_buffer) self._state_dict["cropped_chunk_length"] = 0 yield new_key, pa.Table.from_batches(chunks_buffer) keys_buffer = [] chunks_buffer = [] chunks_buffer_size = 0 if self._state_dict: self._state_dict["previous_state"] = previous_state self._state_dict["num_chunks_since_previous_state"] = num_chunks_since_previous_state + 1 else: cropped_chunk_length = self.batch_size - chunks_buffer_size keys_buffer.append(f"{key}[:{cropped_chunk_length}]") chunks_buffer.append(chunk.slice(0, cropped_chunk_length)) new_key = "_".join(str(_key) for _key in keys_buffer) if self._state_dict: self._state_dict["batch_idx"] += 1 self._state_dict["num_chunks_since_previous_state"] += len(chunks_buffer) self._state_dict["cropped_chunk_length"] = cropped_chunk_length yield new_key, pa.Table.from_batches(chunks_buffer) keys_buffer = [f"{key}[{cropped_chunk_length}:]"] chunks_buffer = [chunk.slice(cropped_chunk_length, len(chunk) - cropped_chunk_length)] chunks_buffer_size = len(chunk) - cropped_chunk_length if self._state_dict: self._state_dict["previous_state"] = previous_state self._state_dict["num_chunks_since_previous_state"] = num_chunks_since_previous_state if self._state_dict: previous_state = self.ex_iterable.state_dict() if not self.drop_last_batch and chunks_buffer: new_key = "_".join(str(_key) for _key in keys_buffer) if self._state_dict: self._state_dict["previous_state"] = previous_state self._state_dict["batch_idx"] += 1 self._state_dict["num_chunks_since_previous_state"] = 0 self._state_dict["cropped_chunk_length"] = 0 yield new_key, pa.Table.from_batches(chunks_buffer) def shuffle_data_sources(self, generator: np.random.Generator) -> "RebatchedArrowExamplesIterable": return RebatchedArrowExamplesIterable( self.ex_iterable.shuffle_data_sources(generator), self.batch_size, self.drop_last_batch ) def shard_data_sources(self, num_shards: int, index: int, contiguous=True) -> "RebatchedArrowExamplesIterable": return RebatchedArrowExamplesIterable( self.ex_iterable.shard_data_sources(num_shards, index, contiguous=contiguous), self.batch_size, self.drop_last_batch, ) @property def num_shards(self) -> int: return self.ex_iterable.num_shards class SelectColumnsIterable(_BaseExamplesIterable): def __init__(self, ex_iterable: _BaseExamplesIterable, column_names: list[str]): super().__init__() self.ex_iterable = ex_iterable self.column_names = column_names @property def iter_arrow(self): if self.ex_iterable.iter_arrow: return self._iter_arrow @property def is_typed(self): return self.ex_iterable.is_typed @property def features(self): return self.ex_iterable.features def _init_state_dict(self) -> dict: self._state_dict = self.ex_iterable._init_state_dict() return self._state_dict def __iter__(self): for idx, row in self.ex_iterable: yield idx, {c: row[c] for c in self.column_names} def _iter_arrow(self) -> Iterator[tuple[Key, pa.Table]]: for idx, pa_table in self.ex_iterable.iter_arrow(): if len(pa_table) > 0: # empty tables have no schema yield idx, pa_table.select(self.column_names) def shuffle_data_sources(self, generator: np.random.Generator) -> "SelectColumnsIterable": return SelectColumnsIterable(self.ex_iterable.shuffle_data_sources(generator), self.column_names) def shard_data_sources(self, num_shards: int, index: int, contiguous=True) -> "SelectColumnsIterable": return SelectColumnsIterable( self.ex_iterable.shard_data_sources(num_shards, index, contiguous=contiguous), self.column_names ) @property def num_shards(self) -> int: return self.ex_iterable.num_shards class StepExamplesIterable(_BaseExamplesIterable): def __init__(self, ex_iterable: _BaseExamplesIterable, step: int, offset: int): super().__init__() self.ex_iterable = ex_iterable self.step = step self.offset = offset # TODO(QL): implement iter_arrow @property def is_typed(self): return self.ex_iterable.is_typed @property def features(self): return self.ex_iterable.features def _init_state_dict(self) -> dict: self._state_dict = self.ex_iterable._init_state_dict() return self._state_dict def __iter__(self): ex_iterator = iter(self.ex_iterable) while True: batch = list(islice(ex_iterator, self.step)) if len(batch) > self.offset: yield batch[self.offset] else: break def shuffle_data_sources(self, generator: np.random.Generator) -> "StepExamplesIterable": return StepExamplesIterable( self.ex_iterable.shuffle_data_sources(generator), step=self.step, offset=self.offset ) def shard_data_sources(self, num_shards: int, index: int, contiguous=True) -> "StepExamplesIterable": return StepExamplesIterable( self.ex_iterable.shard_data_sources(num_shards, index, contiguous=contiguous), step=self.step, offset=self.offset, ) @property def num_shards(self) -> int: return self.ex_iterable.num_shards class CyclingMultiSourcesExamplesIterable(_BaseExamplesIterable): def __init__( self, ex_iterables: list[_BaseExamplesIterable], stopping_strategy: Literal["first_exhausted", "all_exhausted"] = "first_exhausted", ): super().__init__() self.ex_iterables = ex_iterables self.stopping_strategy = stopping_strategy # if undersampling ("first_exhausted"), we stop as soon as one dataset is exhausted # if oversampling ("all_exhausted"), we stop as soons as every dataset is exhausted, i.e as soon as every samples of every dataset has been visited at least once self.bool_strategy_func = np.all if (stopping_strategy == "all_exhausted") else np.any # TODO(QL): implement iter_arrow @property def is_typed(self): return self.ex_iterables[0].is_typed @property def features(self): return self.ex_iterables[0].features def _get_indices_iterator(self): # this is an infinite iterator to keep track of which iterator we want to pick examples from ex_iterable_idx = self._state_dict["ex_iterable_idx"] if self._state_dict else 0 for next_ex_iterable_idx in islice(cycle(range(len(self.ex_iterables))), ex_iterable_idx + 1, None): if self._state_dict: self._state_dict["ex_iterable_idx"] = next_ex_iterable_idx yield ex_iterable_idx ex_iterable_idx = next_ex_iterable_idx def _init_state_dict(self) -> dict: self._state_dict = { "ex_iterable_idx": 0, "ex_iterables": [ex_iterable._init_state_dict() for ex_iterable in self.ex_iterables], "previous_states": [None] * len(self.ex_iterables), "is_exhausted": [False] * len(self.ex_iterables), "type": self.__class__.__name__, } return self._state_dict def __iter__(self): # we use this to buffer one example of each iterator to know if an iterator is exhausted nexts = [None] * len(self.ex_iterables) # because of that, we need to rewind 1 example when reloading the state dict if self._state_dict: for i in range(len(self.ex_iterables)): if self._state_dict["previous_states"][i] is not None: self.ex_iterables[i].load_state_dict(self._state_dict["previous_states"][i]) iterators = [iter(ex_iterable) for ex_iterable in self.ex_iterables] indices_iterator = self._get_indices_iterator() is_exhausted = ( np.array(self._state_dict["is_exhausted"]) if self._state_dict else np.full(len(self.ex_iterables), False) ) for i in indices_iterator: # if the stopping criteria is met, break the main for loop if self.bool_strategy_func(is_exhausted): break # let's pick one example from the iterator at index i if nexts[i] is None: nexts[i] = next(iterators[i], False) result = nexts[i] if self._state_dict: self._state_dict["previous_states"][i] = deepcopy(self._state_dict["ex_iterables"][i]) nexts[i] = next(iterators[i], False) # the iterator is exhausted if nexts[i] is False: is_exhausted[i] = True if self._state_dict: self._state_dict["is_exhausted"][i] = True # we reset it in case the stopping crtieria isn't met yet nexts[i] = None if self._state_dict: self._state_dict["ex_iterables"][i] = self.ex_iterables[i]._init_state_dict() self._state_dict["previous_states"][i] = None iterators[i] = iter(self.ex_iterables[i]) if result is not False: yield result def shuffle_data_sources(self, generator: np.random.Generator) -> "CyclingMultiSourcesExamplesIterable": """Shuffle each underlying examples iterable.""" ex_iterables = [ex_iterable.shuffle_data_sources(generator) for ex_iterable in self.ex_iterables] return CyclingMultiSourcesExamplesIterable(ex_iterables, self.stopping_strategy) @property def num_shards(self) -> int: return min(ex_iterable.num_shards for ex_iterable in self.ex_iterables) def shard_data_sources( self, num_shards: int, index: int, contiguous=True ) -> "CyclingMultiSourcesExamplesIterable": """Either keep only the requested shard, or propagate the request to the underlying iterable.""" return CyclingMultiSourcesExamplesIterable( [iterable.shard_data_sources(num_shards, index, contiguous=contiguous) for iterable in self.ex_iterables], stopping_strategy=self.stopping_strategy, ) class VerticallyConcatenatedMultiSourcesExamplesIterable(_BaseExamplesIterable): """ VerticallyConcatenatedMultiSourcesExamplesIterable simply chains the input iterables. It doesn't require the examples iterables to always yield the same columns. Instead, this is handled by the `IterableDataset` class or `FormattedExamplesIterable`. For information, `IterableDataset` merges the features of all the datasets to concatenate into one. We use `IterableDataset._resolve_features` to obtain the features of all the datasets to concatenate. Then for each example, `IterableDataset` and `FormattedExamplesIterable` automatically fill missing columns with None. This is done with `_apply_feature_types_on_example`. """ def __init__(self, ex_iterables: list[_BaseExamplesIterable]): super().__init__() self.ex_iterables = ex_iterables @property def is_typed(self): return self.ex_iterables[0].is_typed @property def features(self): return self.ex_iterables[0].features @property def iter_arrow(self): if all(ex_iterable.iter_arrow is not None for ex_iterable in self.ex_iterables): return self._iter_arrow def _init_state_dict(self) -> dict: self._state_dict = { "ex_iterable_idx": 0, "ex_iterables": [ex_iterable._init_state_dict() for ex_iterable in self.ex_iterables], "type": self.__class__.__name__, } return self._state_dict def __iter__(self): ex_iterable_idx_start = self._state_dict["ex_iterable_idx"] if self._state_dict else 0 for ex_iterable in islice(self.ex_iterables, ex_iterable_idx_start, None): yield from ex_iterable if self._state_dict: self._state_dict["ex_iterable_idx"] += 1 def _iter_arrow(self): ex_iterable_idx_start = self._state_dict["ex_iterable_idx"] if self._state_dict else 0 for ex_iterable in islice(self.ex_iterables, ex_iterable_idx_start, None): yield from ex_iterable.iter_arrow() if self._state_dict: self._state_dict["ex_iterable_idx"] += 1 def shuffle_data_sources( self, generator: np.random.Generator ) -> "VerticallyConcatenatedMultiSourcesExamplesIterable": """Shuffle the list of examples iterable, as well as each underlying examples iterable.""" rng = deepcopy(generator) ex_iterables = list(self.ex_iterables) rng.shuffle(ex_iterables) ex_iterables = [ex_iterable.shuffle_data_sources(generator) for ex_iterable in ex_iterables] return VerticallyConcatenatedMultiSourcesExamplesIterable(ex_iterables) @property def num_shards(self) -> int: return min(ex_iterable.num_shards for ex_iterable in self.ex_iterables) def shard_data_sources( self, num_shards: int, index: int, contiguous=True ) -> "VerticallyConcatenatedMultiSourcesExamplesIterable": """Either keep only the requested shard, or propagate the request to the underlying iterable.""" return VerticallyConcatenatedMultiSourcesExamplesIterable( [iterable.shard_data_sources(num_shards, index, contiguous=contiguous) for iterable in self.ex_iterables] ) def _check_column_names(column_names: list[str]): """Check the column names to make sure they don't contain duplicates.""" counter = Counter(column_names) if not all(count == 1 for count in counter.values()): duplicated_columns = [col for col in counter if counter[col] > 1] raise ValueError( f"The examples iterables can't have duplicated columns but columns {duplicated_columns} are duplicated." ) class HorizontallyConcatenatedMultiSourcesExamplesIterable(_BaseExamplesIterable): """ HorizontallyConcatenatedMultiSourcesExamplesIterable merges examples together for the input list of iterables. It also checks that there are no duplicate columns (otherwise we don't know which one to keep). This check is done once when yielding the first example. However it doesn't fill missing columns with None. Instead, this is handled by the `IterableDataset` class or `FormattedExamplesIterable`. For information, `IterableDataset` merges the features of all the datasets to concatenate into one. We use `IterableDataset._resolve_features` to obtain the features of all the datasets to concatenate. Then for each example, `IterableDataset` and `FormattedExamplesIterable` automatically fill missing columns with None. This is done with `_apply_feature_types_on_example`. """ def __init__(self, ex_iterables: list[_BaseExamplesIterable]): super().__init__() self.ex_iterables = ex_iterables # TODO(QL): implement iter_arrow @property def is_typed(self): return self.ex_iterables[0].is_typed @property def features(self): return self.ex_iterables[0].features def _init_state_dict(self) -> dict: self._state_dict = { "ex_iterables": [ex_iterable._init_state_dict() for ex_iterable in self.ex_iterables], "type": self.__class__.__name__, } return self._state_dict def __iter__(self): ex_iterators = [iter(ex_iterable) for ex_iterable in self.ex_iterables] for i in itertools.count(): keys = [] examples = [] for ex_iterator in list(ex_iterators): try: key, example = next(ex_iterator) keys.append(key) examples.append(example) except StopIteration: ex_iterators.remove(ex_iterator) if ex_iterators: if i == 0: _check_column_names([column_name for example in examples for column_name in example]) new_example = {} for example in examples: new_example.update(example) new_key = "_".join(str(key) for key in keys) yield new_key, new_example else: break def shuffle_data_sources( self, generator: np.random.Generator ) -> "HorizontallyConcatenatedMultiSourcesExamplesIterable": """Doesn't shuffle the wrapped examples iterable since it would break the alignment between them.""" return self @property def num_shards(self) -> int: return 1 def shard_data_sources( self, num_shards: int, index: int, contiguous=True ) -> "HorizontallyConcatenatedMultiSourcesExamplesIterable": """Either keep only the requested shard, or propagate the request to the underlying iterable.""" return HorizontallyConcatenatedMultiSourcesExamplesIterable( [iterable.shard_data_sources(num_shards, index, contiguous=contiguous) for iterable in self.ex_iterables] ) class RandomlyCyclingMultiSourcesExamplesIterable(CyclingMultiSourcesExamplesIterable): def __init__( self, ex_iterables: list[_BaseExamplesIterable], generator: np.random.Generator, probabilities: Optional[list[float]] = None, stopping_strategy: Literal["first_exhausted", "all_exhausted"] = "first_exhausted", ): super().__init__(ex_iterables, stopping_strategy) self.generator = deepcopy(generator) self.probabilities = probabilities # TODO(QL): implement iter_arrow @property def is_typed(self): return self.ex_iterables[0].is_typed @property def features(self): return self.ex_iterables[0].features def _get_indices_iterator(self): rng = deepcopy(self.generator) num_sources = len(self.ex_iterables) random_batch_size = 1000 # this is an infinite iterator that randomly samples the index of the source to pick examples from index_offset = self._state_dict["bit_generator_index_offset"] if self._state_dict else 0 if self._state_dict: rng.bit_generator.state = self._state_dict["bit_generator_state"] if self.probabilities is None: while True: for i in islice(rng.integers(0, num_sources, size=random_batch_size), index_offset, None): index_offset = (index_offset + 1) % random_batch_size if self._state_dict: self._state_dict["bit_generator_index_offset"] = index_offset if index_offset == 0: self._state_dict["bit_generator_state"] = rng.bit_generator.state yield int(i) else: while True: for i in islice( rng.choice(num_sources, size=random_batch_size, p=self.probabilities), index_offset, None ): index_offset = (index_offset + 1) % random_batch_size if self._state_dict: self._state_dict["bit_generator_index_offset"] = index_offset if index_offset == 0: self._state_dict["bit_generator_state"] = rng.bit_generator.state yield int(i) def _init_state_dict(self) -> dict: self._state_dict = { "bit_generator_state": self.generator.bit_generator.state, "bit_generator_index_offset": 0, "ex_iterables": [ex_iterable._init_state_dict() for ex_iterable in self.ex_iterables], "previous_states": [None] * len(self.ex_iterables), "is_exhausted": [False] * len(self.ex_iterables), "type": self.__class__.__name__, } return self._state_dict def shuffle_data_sources(self, generator: np.random.Generator) -> "RandomlyCyclingMultiSourcesExamplesIterable": """Shuffle the data sources of each wrapped examples iterable.""" ex_iterables = [ex_iterable.shuffle_data_sources(generator) for ex_iterable in self.ex_iterables] return RandomlyCyclingMultiSourcesExamplesIterable( ex_iterables, generator=generator, probabilities=self.probabilities, stopping_strategy=self.stopping_strategy, ) def shard_data_sources( self, num_shards: int, index: int, contiguous=True ) -> "RandomlyCyclingMultiSourcesExamplesIterable": """Either keep only the requested shard, or propagate the request to the underlying iterable.""" return RandomlyCyclingMultiSourcesExamplesIterable( [iterable.shard_data_sources(num_shards, index, contiguous=contiguous) for iterable in self.ex_iterables], self.generator, self.probabilities, self.stopping_strategy, ) def _table_output_to_arrow(output) -> pa.Table: if isinstance(output, pa.Table): return output if isinstance(output, (pd.DataFrame, pd.Series)): return pa.Table.from_pandas(output) if config.POLARS_AVAILABLE and "polars" in sys.modules: import polars as pl if isinstance(output, (pl.DataFrame, pl.Series)): return output.to_arrow() return output class MappedExamplesIterable(_BaseExamplesIterable): def __init__( self, ex_iterable: _BaseExamplesIterable, function: Callable, with_indices: bool = False, input_columns: Optional[list[str]] = None, batched: bool = False, batch_size: Optional[int] = 1000, drop_last_batch: bool = False, remove_columns: Optional[list[str]] = None, fn_kwargs: Optional[dict] = None, formatting: Optional["FormattingConfig"] = None, features: Optional[Features] = None, max_num_running_async_map_functions_in_parallel: Optional[int] = None, ): super().__init__() self.ex_iterable = ex_iterable self.function = function self.batched = batched self.batch_size = batch_size self.drop_last_batch = drop_last_batch self.remove_columns = remove_columns self.with_indices = with_indices self.input_columns = input_columns self.fn_kwargs = fn_kwargs or {} self.formatting = formatting # required for iter_arrow self._features = features self.max_num_running_async_map_functions_in_parallel = ( max_num_running_async_map_functions_in_parallel or config.MAX_NUM_RUNNING_ASYNC_MAP_FUNCTIONS_IN_PARALLEL ) # sanity checks if formatting and formatting.is_table: # batch_size should match for iter_arrow if not isinstance(ex_iterable, RebatchedArrowExamplesIterable): raise ValueError( f"The {formatting.format_type.capitalize()}-formatted {type(self).__name__} has underlying iterable" f"that is a {type(ex_iterable).__name__} instead of a RebatchedArrowExamplesIterable." ) elif ex_iterable.batch_size != (batch_size if batched else 1): raise ValueError( f"The {formatting.format_type.capitalize()}-formatted {type(self).__name__} has batch_size={batch_size if batched else 1} which is" f"different from {ex_iterable.batch_size=} from its underlying iterable." ) # to enable graceful ends self._owned_loops_and_tasks: list[tuple[asyncio.AbstractEventLoop, list[asyncio.Task]]] = [] @property def iter_arrow(self): if self.formatting and self.formatting.is_table: return self._iter_arrow @property def is_typed(self): return self.features is not None # user has extracted features @property def features(self): return self._features def _init_state_dict(self) -> dict: self._state_dict = { "examples_iterable": self.ex_iterable._init_state_dict(), "previous_state": None, "num_examples_since_previous_state": 0, "previous_state_example_idx": 0, "type": self.__class__.__name__, } return self._state_dict def __iter__(self): if self.formatting and self.formatting.is_table: formatter = PythonFormatter() for key, pa_table in self._iter_arrow(max_chunksize=1): yield key, formatter.format_row(pa_table) else: yield from self._iter() def _iter(self): current_idx = self._state_dict["previous_state_example_idx"] if self._state_dict else 0 if self._state_dict and self._state_dict["previous_state"]: self.ex_iterable.load_state_dict(self._state_dict["previous_state"]) num_examples_to_skip = self._state_dict["num_examples_since_previous_state"] else: num_examples_to_skip = 0 iterator = iter(self.ex_iterable) # We use the same logic as in Dataset.map, but with less features/formatting # since they're handled by FormattedExamplesIterable if self.formatting: formatter = get_formatter(self.formatting.format_type) format_dict = formatter.recursive_tensorize if isinstance(formatter, TensorFormatter) else None else: format_dict = None def iter_batched_inputs(): nonlocal current_idx for key, example in iterator: # If `batched`, first build the batch, if `batch_size` is None or <=0, then the batch is the whole dataset iterator_batch = ( iterator if self.batch_size is None or self.batch_size <= 0 else islice(iterator, self.batch_size - 1) ) key_examples_list = [(key, example)] + list(iterator_batch) keys, examples = zip(*key_examples_list) # the new key is the concatenation of the examples keys from the batch key = "_".join(str(key) for key in keys) if ( self.drop_last_batch and self.batch_size is not None and self.batch_size > 0 and len(examples) < self.batch_size ): # ignore last batch return batch = _examples_to_batch(examples) # we need to format here in case we need to stack tensors together batch = format_dict(batch) if format_dict else batch indices = [current_idx + i for i in range(len(key_examples_list))] current_idx += len(indices) yield indices, (key, batch) def iter_inputs(): nonlocal current_idx for key, example in iterator: # If not batched, we can apply the transform and yield the example directly # first copy the example, since we might drop some keys example = dict(example) # no need to do formatting here current_idx += 1 yield current_idx - 1, (key, example) def validate_function_output(processed_inputs): if self.batched and processed_inputs: first_col = next(iter(processed_inputs)) bad_cols = [ col for col in processed_inputs if len(processed_inputs[col]) != len(processed_inputs[first_col]) ] if bad_cols: raise ValueError( f"Column lengths mismatch: columns {bad_cols} have length {[len(processed_inputs[col]) for col in bad_cols]} " f"while {first_col} has length {len(processed_inputs[first_col])}." ) def prepare_inputs(key_example, indices): key, example = key_example fn_args = [example] if self.input_columns is None else [example[col] for col in self.input_columns] additional_args = () if self.with_indices: fn_args += (indices,) inputs = dict(example) return inputs, fn_args, additional_args, self.fn_kwargs def prepare_outputs(key_example, inputs, processed_inputs): validate_function_output(processed_inputs) # this logic mimics the one in Dataset.map if self.remove_columns: for c in self.remove_columns: if c in inputs: del inputs[c] if processed_inputs is key_example[1] and c in processed_inputs: del processed_inputs[c] transformed_inputs = {**inputs, **processed_inputs} # no need to do features decoding here return transformed_inputs def apply_function(key_example, indices): """Utility to apply the function on a selection of columns.""" inputs, fn_args, additional_args, fn_kwargs = prepare_inputs(key_example, indices) processed_inputs = self.function(*fn_args, *additional_args, **fn_kwargs) return prepare_outputs(key_example, inputs, processed_inputs) async def async_apply_function(key_example, indices): """Utility to apply the function on a selection of columns. Same code but async""" inputs, fn_args, additional_args, fn_kwargs = prepare_inputs(key_example, indices) processed_inputs = await self.function(*fn_args, *additional_args, **fn_kwargs) return prepare_outputs(key_example, inputs, processed_inputs) tasks: list[asyncio.Task] = [] if inspect.iscoroutinefunction(self.function): try: loop = asyncio.get_running_loop() except RuntimeError: loop = asyncio.new_event_loop() self._owned_loops_and_tasks.append((loop, tasks)) else: loop = None def iter_outputs(): nonlocal tasks, loop inputs_iterator = iter_batched_inputs() if self.batched else iter_inputs() if inspect.iscoroutinefunction(self.function): if self._state_dict: previous_state = self.ex_iterable.state_dict() self._state_dict["previous_state"] = previous_state previous_state_task = None previous_state_example_idx = self._state_dict["previous_state_example_idx"] indices: Union[list[int], list[list[int]]] = [] for i, key_example in inputs_iterator: indices.append(i) tasks.append(loop.create_task(async_apply_function(key_example, i))) # keep the total active tasks under a certain number if len(tasks) >= self.max_num_running_async_map_functions_in_parallel: done, pending = loop.run_until_complete( asyncio.wait(tasks, return_when=asyncio.FIRST_COMPLETED) ) while tasks and len(pending) >= self.max_num_running_async_map_functions_in_parallel: done, pending = loop.run_until_complete( asyncio.wait(tasks, return_when=asyncio.FIRST_COMPLETED) ) if len(tasks) >= 10 * self.max_num_running_async_map_functions_in_parallel: loop.run_until_complete(tasks[0]) # yield finished tasks while tasks and tasks[0].done(): i, task = indices.pop(0), tasks.pop(0) yield i, task.result() if self._state_dict and task is previous_state_task: self._state_dict["previous_state"] = previous_state self._state_dict["num_examples_since_previous_state"] = 0 self._state_dict["previous_state_example_idx"] = previous_state_example_idx previous_state, previous_state_task = None, None # checkpoint if self._state_dict and previous_state_task is None and tasks: previous_state = self.ex_iterable.state_dict() previous_state_task = tasks[-1] previous_state_example_idx = current_idx while tasks: yield indices[0], loop.run_until_complete(tasks[0]) indices.pop(0), tasks.pop(0) else: if self._state_dict: if self.batched: self._state_dict["previous_state"] = self.ex_iterable.state_dict() self._state_dict["num_examples_since_previous_state"] = 0 self._state_dict["previous_state_example_idx"] = current_idx for i, key_example in inputs_iterator: if self._state_dict: if not self.batched: self._state_dict["previous_state_example_idx"] = current_idx yield i, apply_function(key_example, i) if self._state_dict: if self.batched: self._state_dict["previous_state"] = self.ex_iterable.state_dict() self._state_dict["num_examples_since_previous_state"] = 0 self._state_dict["previous_state_example_idx"] = current_idx try: outputs = iter_outputs() if self.batched: outputs = ( (key, transformed_example) for key, transformed_batch in outputs for transformed_example in _batch_to_examples(transformed_batch) ) for key, transformed_example in outputs: if self._state_dict and self._state_dict["previous_state"] is not None: self._state_dict["num_examples_since_previous_state"] += 1 if num_examples_to_skip > 0: num_examples_to_skip -= 1 continue yield key, transformed_example except (Exception, KeyboardInterrupt): if loop: logger.debug(f"Canceling {len(tasks)} async tasks.") for task in tasks: task.cancel(msg="KeyboardInterrupt") try: loop.run_until_complete(asyncio.gather(*tasks)) except (asyncio.CancelledError, ValueError): logger.debug("Tasks canceled.") raise def _iter_arrow(self, max_chunksize: Optional[int] = None) -> Iterator[tuple[Key, pa.Table]]: formatter: TableFormatter = get_formatter(self.formatting.format_type) if self.formatting else ArrowFormatter() if self.ex_iterable.iter_arrow: iterator = self.ex_iterable.iter_arrow() else: iterator = _convert_to_arrow( self.ex_iterable, batch_size=self.batch_size if self.batched else 1, drop_last_batch=self.drop_last_batch, ) if self._state_dict and self._state_dict["previous_state"]: self.ex_iterable.load_state_dict(self._state_dict["previous_state"]) num_examples_to_skip = self._state_dict["num_examples_since_previous_state"] else: num_examples_to_skip = 0 if self._state_dict and max_chunksize is not None: self._state_dict["previous_state"] = self.ex_iterable.state_dict() self._state_dict["num_examples_since_previous_state"] = 0 current_idx = self._state_dict["previous_state_example_idx"] if self._state_dict else 0 for key, pa_table in iterator: if ( self.batched and self.batch_size is not None and len(pa_table) < self.batch_size and self.drop_last_batch ): return # first build the batch function_args = ( [formatter.format_batch(pa_table)] if self.input_columns is None else [pa_table[col] for col in self.input_columns] ) if self.with_indices: if self.batched: function_args.append([current_idx + i for i in range(len(pa_table))]) else: function_args.append(current_idx) # then apply the transform output = self.function(*function_args, **self.fn_kwargs) output_table = _table_output_to_arrow(output) if not isinstance(output_table, pa.Table): raise TypeError( f"Provided `function` which is applied to {formatter.table_type} returns a variable of type " f"{type(output)}. Make sure provided `function` returns a {formatter.table_type} to update the dataset." ) # we don't need to merge results for consistency with Dataset.map which merges iif both input and output are dicts # then remove the unwanted columns if self.remove_columns: for column in self.remove_columns: if column in output_table.column_names: output_table = output_table.remove_column(output_table.column_names.index(column)) # return output if max_chunksize is None: current_idx += len(pa_table) if self._state_dict: self._state_dict["previous_state_example_idx"] += len(pa_table) yield key, output_table else: for i, pa_subtable in enumerate(output_table.to_reader(max_chunksize=max_chunksize)): current_idx += 1 if self._state_dict: self._state_dict["num_examples_since_previous_state"] += 1 if num_examples_to_skip > 0: num_examples_to_skip -= 1 continue yield f"{key}_{i}", pa_subtable if self._state_dict: self._state_dict["previous_state"] = self.ex_iterable.state_dict() self._state_dict["num_examples_since_previous_state"] = 0 self._state_dict["previous_state_example_idx"] += len(pa_table) def shuffle_data_sources(self, generator: np.random.Generator) -> "MappedExamplesIterable": """Shuffle the wrapped examples iterable.""" return MappedExamplesIterable( self.ex_iterable.shuffle_data_sources(generator), function=self.function, with_indices=self.with_indices, input_columns=self.input_columns, batched=self.batched, batch_size=self.batch_size, drop_last_batch=self.drop_last_batch, remove_columns=self.remove_columns, fn_kwargs=self.fn_kwargs, formatting=self.formatting, features=self.features, max_num_running_async_map_functions_in_parallel=self.max_num_running_async_map_functions_in_parallel, ) def shard_data_sources(self, num_shards: int, index: int, contiguous=True) -> "MappedExamplesIterable": """Keep only the requested shard.""" return MappedExamplesIterable( self.ex_iterable.shard_data_sources(num_shards, index, contiguous=contiguous), function=self.function, with_indices=self.with_indices, input_columns=self.input_columns, batched=self.batched, batch_size=self.batch_size, drop_last_batch=self.drop_last_batch, remove_columns=self.remove_columns, fn_kwargs=self.fn_kwargs, formatting=self.formatting, features=self.features, max_num_running_async_map_functions_in_parallel=self.max_num_running_async_map_functions_in_parallel, ) @property def num_shards(self) -> int: return self.ex_iterable.num_shards def _add_mask( input: Union[dict, pa.Table], mask: Union[bool, list, pa.Array, pa.ChunkedArray, pa.BooleanScalar], mask_column_name: str, ): if isinstance(input, pa.Table): if not isinstance(mask, (list, pa.Array, pa.ChunkedArray)): mask = pa.array([mask], type=pa.bool_()) return input.append_column(mask_column_name, mask) else: return {mask_column_name: mask} def add_mask(mask_function: Callable, input: Union[dict, pa.Table], *args, mask_column_name: str, **kwargs): mask = mask_function(input, *args, **kwargs) return _add_mask(input, mask, mask_column_name) async def async_add_mask( mask_function: Callable, input: Union[dict, pa.Table], *args, mask_column_name: str, **kwargs ): mask = await mask_function(input, *args, **kwargs) return _add_mask(input, mask, mask_column_name) class FilteredExamplesIterable(MappedExamplesIterable): mask_column_name = "===MASK===" def __init__( self, ex_iterable: _BaseExamplesIterable, function: Callable, with_indices: bool = False, input_columns: Optional[list[str]] = None, batched: bool = False, batch_size: Optional[int] = 1000, fn_kwargs: Optional[dict] = None, formatting: Optional["FormattingConfig"] = None, ): self.mask_function = function if ex_iterable.is_typed: features = Features({**ex_iterable.features, self.mask_column_name: Value("bool")}) else: features = None super().__init__( ex_iterable=ex_iterable, function=partial( async_add_mask if inspect.iscoroutinefunction(function) else add_mask, function, mask_column_name=self.mask_column_name, ), with_indices=with_indices, input_columns=input_columns, batched=batched, batch_size=batch_size, fn_kwargs=fn_kwargs, formatting=formatting, features=features, ) def _iter(self): for key, example in super()._iter(): example = dict(example) if example.pop(self.mask_column_name): yield key, example def _iter_arrow(self, max_chunksize: Optional[int] = None): for key, pa_table in super()._iter_arrow(max_chunksize=max_chunksize): mask = pa_table[self.mask_column_name] yield key, pa_table.drop(self.mask_column_name).filter(mask) def shuffle_data_sources(self, seed: Optional[int]) -> "FilteredExamplesIterable": """Shuffle the wrapped examples iterable.""" return FilteredExamplesIterable( self.ex_iterable.shuffle_data_sources(seed), function=self.mask_function, with_indices=self.with_indices, input_columns=self.input_columns, batched=self.batched, batch_size=self.batch_size, fn_kwargs=self.fn_kwargs, formatting=self.formatting, ) def shard_data_sources(self, num_shards: int, index: int, contiguous=True) -> "FilteredExamplesIterable": """Keep only the requested shard.""" return FilteredExamplesIterable( self.ex_iterable.shard_data_sources(num_shards, index, contiguous=contiguous), function=self.mask_function, with_indices=self.with_indices, input_columns=self.input_columns, batched=self.batched, batch_size=self.batch_size, fn_kwargs=self.fn_kwargs, formatting=self.formatting, ) @property def num_shards(self) -> int: return self.ex_iterable.num_shards class BufferShuffledExamplesIterable(_BaseExamplesIterable): def __init__(self, ex_iterable: _BaseExamplesIterable, buffer_size: int, generator: np.random.Generator): super().__init__() self.ex_iterable = ex_iterable self.buffer_size = buffer_size self.generator = generator # TODO(QL): implement iter_arrow @property def is_typed(self): return self.ex_iterable.is_typed @property def features(self): return self.ex_iterable.features def _init_state_dict(self) -> dict: self._state_dict = self.ex_iterable._init_state_dict() self._original_state_dict = self.state_dict() return self._state_dict def load_state_dict(self, state_dict: dict) -> dict: if self._state_dict: if state_dict != self._original_state_dict: logger.warning( "Loading a state dict of a shuffle buffer of a dataset without the buffer content." "The shuffle buffer will be refilled before starting to yield new examples." ) return super().load_state_dict(state_dict) @staticmethod def _iter_random_indices(rng: np.random.Generator, buffer_size: int, random_batch_size=1000) -> Iterator[int]: while True: yield from (int(i) for i in rng.integers(0, buffer_size, size=random_batch_size)) def __iter__(self): buffer_size = self.buffer_size rng = deepcopy(self.generator) indices_iterator = self._iter_random_indices(rng, buffer_size) # this is the shuffle buffer that we keep in memory mem_buffer = [] for x in self.ex_iterable: if len(mem_buffer) == buffer_size: # if the buffer is full, pick and example from it i = next(indices_iterator) yield mem_buffer[i] mem_buffer[i] = x # replace the picked example by a new one else: # otherwise, keep filling the buffer mem_buffer.append(x) # when we run out of examples, we shuffle the remaining examples in the buffer and yield them rng.shuffle(mem_buffer) yield from mem_buffer def shuffle_data_sources(self, generator: np.random.Generator) -> "BufferShuffledExamplesIterable": """Shuffle the wrapped examples iterable as well as the shuffling buffer.""" return BufferShuffledExamplesIterable( self.ex_iterable.shuffle_data_sources(generator), buffer_size=self.buffer_size, generator=generator ) def shard_data_sources(self, num_shards: int, index: int, contiguous=True) -> "BufferShuffledExamplesIterable": """Keep only the requested shard.""" return BufferShuffledExamplesIterable( self.ex_iterable.shard_data_sources(num_shards, index, contiguous=contiguous), buffer_size=self.buffer_size, generator=self.generator, ) @property def num_shards(self) -> int: return self.ex_iterable.num_shards class SkipExamplesIterable(_BaseExamplesIterable): def __init__( self, ex_iterable: _BaseExamplesIterable, n: int, block_sources_order_when_shuffling: bool = True, split_when_sharding: bool = True, ): super().__init__() self.ex_iterable = ex_iterable self.n = n self.block_sources_order_when_shuffling = block_sources_order_when_shuffling self.split_when_sharding = split_when_sharding # TODO(QL): implement iter_arrow @property def is_typed(self): return self.ex_iterable.is_typed @property def features(self): return self.ex_iterable.features def _init_state_dict(self) -> dict: self._state_dict = { "skipped": False, "examples_iterable": self.ex_iterable._init_state_dict(), "type": self.__class__.__name__, } return self._state_dict def __iter__(self): ex_iterable_idx_start = 0 if self._state_dict and self._state_dict["skipped"] else self.n if self._state_dict: self._state_dict["skipped"] = True yield from islice(self.ex_iterable, ex_iterable_idx_start, None) @staticmethod def split_number(num, n): quotient = num // n remainder = num % n result = [quotient] * n for i in range(remainder): result[i] += 1 return result def shuffle_data_sources(self, generator: np.random.Generator) -> "SkipExamplesIterable": """May not shuffle the wrapped examples iterable since it would skip examples from other shards instead.""" if self.block_sources_order_when_shuffling: return self else: return SkipExamplesIterable( self.ex_iterable.shuffle_data_sources(generator), n=self.n, block_sources_order_when_shuffling=self.block_sources_order_when_shuffling, split_when_sharding=self.split_when_sharding, ) def shard_data_sources(self, num_shards: int, index: int, contiguous=True) -> "SkipExamplesIterable": """Keep only the requested shard.""" if self.split_when_sharding: return SkipExamplesIterable( self.ex_iterable.shard_data_sources(num_shards, index, contiguous=contiguous), n=self.split_number(self.n, num_shards)[index], block_sources_order_when_shuffling=self.block_sources_order_when_shuffling, split_when_sharding=self.split_when_sharding, ) else: return self @property def num_shards(self) -> int: return self.ex_iterable.num_shards class RepeatExamplesIterable(_BaseExamplesIterable): """ Iterable that repeats the underlying iterable a given number of times. """ def __init__( self, ex_iterable: _BaseExamplesIterable, num_times: Optional[int], ): super().__init__() self.ex_iterable = ex_iterable self.num_times = num_times def _init_state_dict(self) -> dict: self._state_dict = { "repeat_index": 0, "examples_iterable": self.ex_iterable._init_state_dict(), "type": self.__class__.__name__, } return self._state_dict def __iter__(self): repeat_index = self._state_dict["repeat_index"] if self._state_dict else 0 while True: if self.num_times is not None and repeat_index >= max(self.num_times, 0): break yield from self.ex_iterable repeat_index += 1 if self._state_dict: self._state_dict["repeat_index"] = repeat_index self._state_dict["examples_iterable"] = self.ex_iterable._init_state_dict() def shuffle_data_sources(self, generator: np.random.Generator) -> "RepeatExamplesIterable": """Shuffle the underlying iterable, then repeat.""" return RepeatExamplesIterable(self.ex_iterable.shuffle_data_sources(generator), num_times=self.num_times) def shard_data_sources(self, worker_id: int, num_workers: int) -> "RepeatExamplesIterable": """Shard, then repeat shards.""" return RepeatExamplesIterable( self.ex_iterable.shard_data_sources(worker_id, num_workers), num_times=self.num_times, ) @property def n_shards(self) -> int: return self.ex_iterable.n_shards class TakeExamplesIterable(_BaseExamplesIterable): def __init__( self, ex_iterable: _BaseExamplesIterable, n: int, block_sources_order_when_shuffling: bool = True, split_when_sharding: bool = True, ): super().__init__() self.ex_iterable = ex_iterable self.n = n self.block_sources_order_when_shuffling = block_sources_order_when_shuffling self.split_when_sharding = split_when_sharding # TODO(QL): implement iter_arrow @property def is_typed(self): return self.ex_iterable.is_typed @property def features(self): return self.ex_iterable.features def _init_state_dict(self) -> dict: self._state_dict = { "num_taken": 0, "examples_iterable": self.ex_iterable._init_state_dict(), "type": self.__class__.__name__, } return self._state_dict def __iter__(self): ex_iterable_num_taken = self._state_dict["num_taken"] if self._state_dict else 0 for key_example in islice(self.ex_iterable, self.n - ex_iterable_num_taken): if self._state_dict: self._state_dict["num_taken"] += 1 yield key_example @staticmethod def split_number(num, n): quotient = num // n remainder = num % n result = [quotient] * n for i in range(remainder): result[i] += 1 return result def shuffle_data_sources(self, generator: np.random.Generator) -> "TakeExamplesIterable": """May not shuffle the wrapped examples iterable since it would take examples from other shards instead.""" if self.block_sources_order_when_shuffling: return self else: return TakeExamplesIterable( self.ex_iterable.shuffle_data_sources(generator), n=self.n, block_sources_order_when_shuffling=self.block_sources_order_when_shuffling, split_when_sharding=self.split_when_sharding, ) def shard_data_sources(self, num_shards: int, index: int, contiguous=True) -> "TakeExamplesIterable": """Keep only the requested shard.""" if self.split_when_sharding: return TakeExamplesIterable( self.ex_iterable.shard_data_sources(num_shards, index, contiguous=contiguous), n=self.split_number(self.n, num_shards)[index], block_sources_order_when_shuffling=self.block_sources_order_when_shuffling, split_when_sharding=self.split_when_sharding, ) else: return TakeExamplesIterable( self.ex_iterable.shard_data_sources(num_shards, index, contiguous=contiguous), n=self.n, block_sources_order_when_shuffling=self.block_sources_order_when_shuffling, split_when_sharding=self.split_when_sharding, ) @property def num_shards(self) -> int: return self.ex_iterable.num_shards def _apply_feature_types_on_example( example: dict, features: Features, token_per_repo_id: dict[str, Union[str, bool, None]] ) -> dict: example = dict(example) # add missing columns for column_name in features: if column_name not in example: example[column_name] = None # we encode the example for ClassLabel feature types for example encoded_example = features.encode_example(example) # Decode example for Audio feature, e.g. decoded_example = features.decode_example(encoded_example, token_per_repo_id=token_per_repo_id) return decoded_example def _apply_feature_types_on_batch( batch: dict, features: Features, token_per_repo_id: dict[str, Union[str, bool, None]] ) -> dict: batch = dict(batch) # add missing columns n_examples = len(batch[next(iter(batch))]) for column_name in features: if column_name not in batch: batch[column_name] = [None] * n_examples # we encode the batch for ClassLabel feature types for example encoded_batch = features.encode_batch(batch) # Decode batch for Audio feature, e.g. decoded_batch = features.decode_batch(encoded_batch, token_per_repo_id=token_per_repo_id) return decoded_batch @dataclass class FormattingConfig: format_type: Optional[str] @property def is_table(self) -> bool: return isinstance(get_formatter(self.format_type), TableFormatter) @property def is_tensor(self) -> bool: return isinstance(get_formatter(self.format_type), TensorFormatter) class FormattedExamplesIterable(_BaseExamplesIterable): def __init__( self, ex_iterable: _BaseExamplesIterable, formatting: Optional[FormattingConfig], features: Optional[Features], token_per_repo_id: dict[str, Union[str, bool, None]], ): super().__init__() self.ex_iterable = ex_iterable self._features = features self.formatting = formatting self.token_per_repo_id = token_per_repo_id @property def iter_arrow(self): if self.ex_iterable.iter_arrow and (not self.formatting or self.formatting.is_table): return self._iter_arrow @property def is_typed(self): return self.ex_iterable.is_typed or self._features is not None @property def features(self): return self._features def _init_state_dict(self) -> dict: self._state_dict = self.ex_iterable._init_state_dict() return self._state_dict def __iter__(self): if not self.formatting or self.formatting.is_table: formatter = PythonFormatter(features=self._features if not self.ex_iterable.is_typed else None) else: formatter = get_formatter( self.formatting.format_type, features=self._features if not self.ex_iterable.is_typed else None, token_per_repo_id=self.token_per_repo_id, ) if self.ex_iterable.iter_arrow: # feature casting (inc column addition) handled within self._iter_arrow() for key, pa_table in self._iter_arrow(): batch = formatter.format_batch(pa_table) for example in _batch_to_examples(batch): yield key, example else: format_dict = ( formatter.recursive_tensorize if isinstance(formatter, TensorFormatter) else None # cast in case features is None ) for key, example in self.ex_iterable: # don't apply feature types if already applied by ex_iterable (e.g. in case of chained with_format) if self.features and not self.ex_iterable.is_typed: example = _apply_feature_types_on_example( example, self.features, token_per_repo_id=self.token_per_repo_id ) if format_dict: example = format_dict(example) yield key, example def _iter_arrow(self) -> Iterator[tuple[Key, pa.Table]]: if not self.features: yield from self.ex_iterable._iter_arrow() for key, pa_table in self.ex_iterable._iter_arrow(): columns = set(pa_table.column_names) schema = self.features.arrow_schema # add missing columns for column_name in self.features: if column_name not in columns: col = pa.NullArray.from_buffers(pa.null(), len(pa_table), [None]) pa_table = pa_table.append_column(column_name, col) if pa_table.schema != schema: pa_table = cast_table_to_features(pa_table, self.features) yield key, pa_table def shuffle_data_sources(self, generator: np.random.Generator) -> "FormattedExamplesIterable": """Shuffle the wrapped examples iterable.""" return FormattedExamplesIterable( self.ex_iterable.shuffle_data_sources(generator), features=self.features, token_per_repo_id=self.token_per_repo_id, formatting=self.formatting, ) def shard_data_sources(self, num_shards: int, index: int, contiguous=True) -> "FormattedExamplesIterable": """Keep only the requested shard.""" return FormattedExamplesIterable( self.ex_iterable.shard_data_sources(num_shards, index, contiguous=contiguous), features=self.features, token_per_repo_id=self.token_per_repo_id, formatting=self.formatting, ) @property def num_shards(self) -> int: return self.ex_iterable.num_shards @dataclass class ShufflingConfig: generator: np.random.Generator _original_seed: Optional[int] = None @dataclass class DistributedConfig: rank: int world_size: int def _maybe_add_torch_iterable_dataset_parent_class(cls): """Add torch.utils.data.IterableDataset as a parent class if 'torch' is available""" if config.TORCH_AVAILABLE: import torch.utils.data if torch.utils.data.IterableDataset not in cls.__bases__: cls.__bases__ += (torch.utils.data.IterableDataset,) def _maybe_share_with_torch_persistent_workers(value: Union[int, "torch.Tensor"]) -> Union[int, "torch.Tensor"]: if config.TORCH_AVAILABLE: import torch if isinstance(value, torch.Tensor): return value.share_memory_() else: return torch.tensor(value).share_memory_() else: return value class IterableDataset(DatasetInfoMixin): """A Dataset backed by an iterable.""" def __init__( self, ex_iterable: _BaseExamplesIterable, info: Optional[DatasetInfo] = None, split: Optional[NamedSplit] = None, formatting: Optional[FormattingConfig] = None, shuffling: Optional[ShufflingConfig] = None, distributed: Optional[DistributedConfig] = None, token_per_repo_id: Optional[dict[str, Union[str, bool, None]]] = None, ): if distributed and distributed.world_size > 1 and shuffling and shuffling._original_seed is None: raise RuntimeError( "The dataset doesn't have a fixed random seed across nodes to shuffle and split the list of dataset shards by node. " "Please pass e.g. `seed=42` in `.shuffle()` to make all the nodes use the same seed. " ) info = info.copy() if info is not None else DatasetInfo() DatasetInfoMixin.__init__(self, info=info, split=split) self._ex_iterable = copy.copy(ex_iterable) self._formatting = formatting self._shuffling = shuffling self._distributed = distributed self._token_per_repo_id: dict[str, Union[str, bool, None]] = token_per_repo_id or {} self._epoch: Union[int, "torch.Tensor"] = _maybe_share_with_torch_persistent_workers(0) self._starting_state_dict: Optional[dict] = None self._prepare_ex_iterable_for_iteration() # set state_dict _maybe_add_torch_iterable_dataset_parent_class(self.__class__) # subclass of torch IterableDataset def state_dict(self) -> dict: """Get the current state_dict of the dataset. It corresponds to the state at the latest example it yielded. Resuming returns exactly where the checkpoint was saved except in two cases: 1. examples from shuffle buffers are lost when resuming and the buffers are refilled with new data 2. combinations of `.with_format(arrow)` and batched `.map()` may skip one batch. Returns: `dict` Example: ```py >>> from datasets import Dataset, concatenate_datasets >>> ds = Dataset.from_dict({"a": range(6)}).to_iterable_dataset(num_shards=3) >>> for idx, example in enumerate(ds): ... print(example) ... if idx == 2: ... state_dict = ds.state_dict() ... print("checkpoint") ... break >>> ds.load_state_dict(state_dict) >>> print(f"restart from checkpoint") >>> for example in ds: ... print(example) ``` which returns: ``` {'a': 0} {'a': 1} {'a': 2} checkpoint restart from checkpoint {'a': 3} {'a': 4} {'a': 5} ``` ```py >>> from torchdata.stateful_dataloader import StatefulDataLoader >>> ds = load_dataset("deepmind/code_contests", streaming=True, split="train") >>> dataloader = StatefulDataLoader(ds, batch_size=32, num_workers=4) >>> # checkpoint >>> state_dict = dataloader.state_dict() # uses ds.state_dict() under the hood >>> # resume from checkpoint >>> dataloader.load_state_dict(state_dict) # uses ds.load_state_dict() under the hood ``` """ return copy.deepcopy(self._state_dict) def load_state_dict(self, state_dict: dict) -> None: """Load the state_dict of the dataset. The iteration will restart at the next example from when the state was saved. Resuming returns exactly where the checkpoint was saved except in two cases: 1. examples from shuffle buffers are lost when resuming and the buffers are refilled with new data 2. combinations of `.with_format(arrow)` and batched `.map()` may skip one batch. Example: ```py >>> from datasets import Dataset, concatenate_datasets >>> ds = Dataset.from_dict({"a": range(6)}).to_iterable_dataset(num_shards=3) >>> for idx, example in enumerate(ds): ... print(example) ... if idx == 2: ... state_dict = ds.state_dict() ... print("checkpoint") ... break >>> ds.load_state_dict(state_dict) >>> print(f"restart from checkpoint") >>> for example in ds: ... print(example) ``` which returns: ``` {'a': 0} {'a': 1} {'a': 2} checkpoint restart from checkpoint {'a': 3} {'a': 4} {'a': 5} ``` ```py >>> from torchdata.stateful_dataloader import StatefulDataLoader >>> ds = load_dataset("deepmind/code_contests", streaming=True, split="train") >>> dataloader = StatefulDataLoader(ds, batch_size=32, num_workers=4) >>> # checkpoint >>> state_dict = dataloader.state_dict() # uses ds.state_dict() under the hood >>> # resume from checkpoint >>> dataloader.load_state_dict(state_dict) # uses ds.load_state_dict() under the hood ``` """ self._starting_state_dict = state_dict def __repr__(self): return f"IterableDataset({{\n features: {list(self._info.features.keys()) if self._info.features is not None else 'Unknown'},\n num_shards: {self.num_shards}\n}})" def __getstate__(self): return self.__dict__ def __setstate__(self, d): self.__dict__ = d # Re-add torch shared memory, since shared memory is not always kept when pickling self._epoch = _maybe_share_with_torch_persistent_workers(self._epoch) # Re-add torch iterable dataset as a parent class, since dynamically added parent classes are not kept when pickling _maybe_add_torch_iterable_dataset_parent_class(self.__class__) def _head(self, n=5): return next(iter(self.iter(batch_size=n))) @property def epoch(self) -> int: return int(self._epoch) def _effective_generator(self): if self._shuffling and self.epoch == 0: return self._shuffling.generator elif self._shuffling: # Create effective seed using self.epoch (we subtract in order to avoir overflow in long_scalars) effective_seed = deepcopy(self._shuffling.generator).integers(0, 1 << 63) - self.epoch effective_seed = (1 << 63) + effective_seed if effective_seed < 0 else effective_seed return np.random.default_rng(effective_seed) else: raise ValueError("This dataset is not shuffled") @property def num_shards(self) -> int: if self._distributed and self._ex_iterable.num_shards % self._distributed.world_size == 0: return self._ex_iterable.num_shards // self._distributed.world_size return self._ex_iterable.num_shards @property def n_shards(self) -> int: # backward compatibility return self.num_shards def _iter_pytorch(self): ex_iterable = self._prepare_ex_iterable_for_iteration() # Fix for fsspec when using multiprocess to avoid hanging in the ML training loop. (only required for fsspec >= 0.9.0) # See https://github.com/fsspec/gcsfs/issues/379 fsspec.asyn.reset_lock() # check if there aren't too many workers import torch.utils.data worker_info = torch.utils.data.get_worker_info() if self._is_main_process() and ex_iterable.num_shards < worker_info.num_workers: logger.warning( f"Too many dataloader workers: {worker_info.num_workers} (max is dataset.num_shards={ex_iterable.num_shards}). " f"Stopping {worker_info.num_workers - ex_iterable.num_shards} dataloader workers." ) logger.info( f"To parallelize data loading, we give each process some shards (or data sources) to process. " f"Therefore it's unnecessary to have a number of workers greater than dataset.num_shards={ex_iterable.num_shards}. " f"To enable more parallelism, please split the dataset in more files than {ex_iterable.num_shards}." ) # split workload _log_prefix = f"node#{self._distributed.rank} " if self._distributed else "" shards_indices = ex_iterable.split_shard_indices_by_worker( num_shards=worker_info.num_workers, index=worker_info.id, contiguous=False ) if shards_indices: logger.debug( f"{_log_prefix}dataloader worker#{worker_info.id}, ': Starting to iterate over {len(shards_indices)}/{ex_iterable.num_shards} shards." ) ex_iterable = ex_iterable.shard_data_sources( num_shards=worker_info.num_workers, index=worker_info.id, contiguous=False ) self._state_dict = { "examples_iterable": ex_iterable._init_state_dict(), "epoch": self.epoch, } if self._starting_state_dict and self.epoch == self._starting_state_dict["epoch"]: ex_iterable.load_state_dict(self._starting_state_dict["examples_iterable"]) if self._formatting and (ex_iterable.iter_arrow or self._formatting.is_table): formatter = get_formatter(self._formatting.format_type, features=self.features) if ex_iterable.iter_arrow: iterator = ex_iterable.iter_arrow() else: iterator = _convert_to_arrow(ex_iterable, batch_size=1) for key, pa_table in iterator: yield formatter.format_row(pa_table) return else: for key, example in ex_iterable: # no need to format thanks to FormattedExamplesIterable yield example logger.debug( f"{_log_prefix}dataloader worker#{worker_info.id}, ': Finished iterating over {len(shards_indices)}/{ex_iterable.num_shards} shards." ) else: logger.debug( f"{_log_prefix}dataloader worker#{worker_info.id}, ': Stopping... Number of dataset shards < num_workers ({ex_iterable.num_shards}<{worker_info.num_workers})." ) def _is_main_process(self): if self._distributed and self._distributed.rank > 0: return False if "torch" in sys.modules: import torch.utils.data worker_info = torch.utils.data.get_worker_info() if worker_info is not None and worker_info.id > 0: return False return True def _prepare_ex_iterable_for_iteration( self, batch_size: int = 1, drop_last_batch: bool = False ) -> _BaseExamplesIterable: ex_iterable = self._ex_iterable if ( self._formatting and (ex_iterable.iter_arrow or self._formatting.is_table) or (self.features and ex_iterable.features != self.features) ): ex_iterable = RebatchedArrowExamplesIterable( ex_iterable, batch_size=batch_size, drop_last_batch=drop_last_batch ) if self._shuffling: ex_iterable = ex_iterable.shuffle_data_sources(self._effective_generator()) else: ex_iterable = ex_iterable if self._distributed: rank = self._distributed.rank world_size = self._distributed.world_size if ex_iterable.num_shards % world_size == 0: if self._is_main_process(): num_shards_per_node = ex_iterable.num_shards // world_size plural = "s" if num_shards_per_node > 1 else "" logger.info( f"Assigning {num_shards_per_node} shard{plural} (or data source{plural}) of the dataset to each node." ) ex_iterable = ex_iterable.shard_data_sources(num_shards=world_size, index=rank, contiguous=False) else: if self._is_main_process(): logger.info( f"Assigning 1 out of {world_size} examples of the dataset to each node. The others are skipped during the iteration." ) logger.info( f"It is more optimized to distribute the dataset shards (or data sources) across nodes. " f"You can do that by using a dataset with number of shards that is a factor of world_size={world_size}. " f"The current dataset has {ex_iterable.num_shards} which is not a factor of {world_size}" ) ex_iterable = StepExamplesIterable(ex_iterable, step=world_size, offset=rank) if self._formatting or (self.features and ex_iterable.features != self.features): ex_iterable = FormattedExamplesIterable( ex_iterable, formatting=self._formatting, features=self.features, token_per_repo_id=self._token_per_repo_id, ) self._state_dict = { "examples_iterable": ex_iterable._init_state_dict(), "epoch": self.epoch, } if self._starting_state_dict and self.epoch == self._starting_state_dict["epoch"]: ex_iterable.load_state_dict(self._starting_state_dict["examples_iterable"]) return ex_iterable def __iter__(self): if "torch" in sys.modules: import torch.utils.data worker_info = torch.utils.data.get_worker_info() if isinstance(self, torch.utils.data.IterableDataset) and worker_info is not None: # We're a torch.utils.data.IterableDataset in a PyTorch worker process yield from self._iter_pytorch() return ex_iterable = self._prepare_ex_iterable_for_iteration() if self._formatting and (ex_iterable.iter_arrow or self._formatting.is_table): formatter = get_formatter(self._formatting.format_type, features=self.features) if ex_iterable.iter_arrow: iterator = ex_iterable.iter_arrow() else: iterator = _convert_to_arrow(ex_iterable, batch_size=1) for key, pa_table in iterator: yield formatter.format_row(pa_table) return for key, example in ex_iterable: # no need to format thanks to FormattedExamplesIterable yield example def iter(self, batch_size: int, drop_last_batch: bool = False): """Iterate through the batches of size `batch_size`. Args: batch_size (:obj:`int`): size of each batch to yield. drop_last_batch (:obj:`bool`, default `False`): Whether a last batch smaller than the batch_size should be dropped """ if self._formatting: formatter = get_formatter(self._formatting.format_type, features=self.features) format_dict = formatter.recursive_tensorize if isinstance(formatter, TensorFormatter) else None else: format_dict = None ex_iterable = self._prepare_ex_iterable_for_iteration(batch_size=batch_size, drop_last_batch=drop_last_batch) if self._formatting and (ex_iterable.iter_arrow or self._formatting.is_table): if ex_iterable.iter_arrow: iterator = ex_iterable.iter_arrow() else: iterator = _convert_to_arrow(ex_iterable, batch_size=batch_size, drop_last_batch=drop_last_batch) for key, pa_table in iterator: yield formatter.format_batch(pa_table) return iterator = iter(ex_iterable) for key, example in iterator: # If batched, first build the batch examples = [example] + [example for key, example in islice(iterator, batch_size - 1)] if drop_last_batch and len(examples) < batch_size: # ignore last batch return batch = _examples_to_batch(examples) # we need to format here in case we need to stack tensors together yield format_dict(batch) if format_dict else batch @staticmethod def from_generator( generator: Callable, features: Optional[Features] = None, gen_kwargs: Optional[dict] = None, split: NamedSplit = Split.TRAIN, ) -> "IterableDataset": """Create an Iterable Dataset from a generator. Args: generator (`Callable`): A generator function that `yields` examples. features (`Features`, *optional*): Dataset features. gen_kwargs(`dict`, *optional*): Keyword arguments to be passed to the `generator` callable. You can define a sharded iterable dataset by passing the list of shards in `gen_kwargs`. This can be used to improve shuffling and when iterating over the dataset with multiple workers. split ([`NamedSplit`], defaults to `Split.TRAIN`): Split name to be assigned to the dataset. Returns: `IterableDataset` Example: ```py >>> def gen(): ... yield {"text": "Good", "label": 0} ... yield {"text": "Bad", "label": 1} ... >>> ds = IterableDataset.from_generator(gen) ``` ```py >>> def gen(shards): ... for shard in shards: ... with open(shard) as f: ... for line in f: ... yield {"line": line} ... >>> shards = [f"data{i}.txt" for i in range(32)] >>> ds = IterableDataset.from_generator(gen, gen_kwargs={"shards": shards}) >>> ds = ds.shuffle(seed=42, buffer_size=10_000) # shuffles the shards order + uses a shuffle buffer >>> from torch.utils.data import DataLoader >>> dataloader = DataLoader(ds.with_format("torch"), num_workers=4) # give each worker a subset of 32/4=8 shards ``` """ from .io.generator import GeneratorDatasetInputStream return GeneratorDatasetInputStream( generator=generator, features=features, gen_kwargs=gen_kwargs, streaming=True, split=split ).read() @staticmethod def from_spark( df: "pyspark.sql.DataFrame", split: Optional[NamedSplit] = None, features: Optional[Features] = None, **kwargs, ) -> "IterableDataset": """Create an IterableDataset from Spark DataFrame. The dataset is streamed to the driver in batches. Args: df (`pyspark.sql.DataFrame`): The DataFrame containing the desired data. split (`NamedSplit`, *optional*): Split name to be assigned to the dataset. features (`Features`, *optional*): Dataset features. Returns: [`IterableDataset`] Example: ```py >>> df = spark.createDataFrame( >>> data=[[1, "Elia"], [2, "Teo"], [3, "Fang"]], >>> columns=["id", "name"], >>> ) >>> ds = IterableDataset.from_spark(df) ``` """ from .io.spark import SparkDatasetReader if sys.platform == "win32": raise OSError("IterableDataset.from_spark is not currently supported on Windows") return SparkDatasetReader( df, split=split, features=features, streaming=True, **kwargs, ).read() @staticmethod def from_file(filename: str) -> "IterableDataset": """Instantiate a IterableDataset from Arrow table at filename. Args: filename (`str`): File name of the dataset. Returns: [`IterableDataset`] """ pa_table_schema = read_schema_from_file(filename) inferred_features = Features.from_arrow_schema(pa_table_schema) ex_iterable = ArrowExamplesIterable(Dataset._generate_tables_from_cache_file, kwargs={"filename": filename}) return IterableDataset(ex_iterable=ex_iterable, info=DatasetInfo(features=inferred_features)) def with_format( self, type: Optional[str] = None, ) -> "IterableDataset": """ Return a dataset with the specified format. Args: type (`str`, *optional*): Either output type selected in `[None, 'numpy', 'torch', 'tensorflow', 'jax', 'arrow', 'pandas', 'polars']`. `None` means it returns python objects (default). Example: ```py >>> from datasets import load_dataset >>> from transformers import AutoTokenizer >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes", split="validation", streaming=True) >>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") >>> ds = ds.map(lambda x: tokenizer(x['text'], truncation=True, padding=True), batched=True) >>> ds = ds.with_format("torch") >>> next(iter(ds)) {'text': 'compassionately explores the seemingly irreconcilable situation between conservative christian parents and their estranged gay and lesbian children .', 'label': tensor(1), 'input_ids': tensor([ 101, 18027, 16310, 16001, 1103, 9321, 178, 11604, 7235, 6617, 1742, 2165, 2820, 1206, 6588, 22572, 12937, 1811, 2153, 1105, 1147, 12890, 19587, 6463, 1105, 15026, 1482, 119, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), 'token_type_ids': tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), 'attention_mask': tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])} ``` """ type = get_format_type_from_alias(type) # TODO(QL): add format_kwargs # TODO(QL): add format_columns and return_all_columns # TODO(QL): add pandas format return IterableDataset( ex_iterable=self._ex_iterable, info=self._info.copy(), split=self._split, formatting=FormattingConfig(format_type=type), shuffling=copy.deepcopy(self._shuffling), distributed=copy.deepcopy(self._distributed), token_per_repo_id=self._token_per_repo_id, ) def map( self, function: Optional[Callable] = None, with_indices: bool = False, input_columns: Optional[Union[str, list[str]]] = None, batched: bool = False, batch_size: Optional[int] = 1000, drop_last_batch: bool = False, remove_columns: Optional[Union[str, list[str]]] = None, features: Optional[Features] = None, fn_kwargs: Optional[dict] = None, ) -> "IterableDataset": """ Apply a function to all the examples in the iterable dataset (individually or in batches) and update them. If your function returns a column that already exists, then it overwrites it. The function is applied on-the-fly on the examples when iterating over the dataset. You can specify whether the function should be batched or not with the `batched` parameter: - If batched is `False`, then the function takes 1 example in and should return 1 example. An example is a dictionary, e.g. `{"text": "Hello there !"}`. - If batched is `True` and `batch_size` is 1, then the function takes a batch of 1 example as input and can return a batch with 1 or more examples. A batch is a dictionary, e.g. a batch of 1 example is {"text": ["Hello there !"]}. - If batched is `True` and `batch_size` is `n` > 1, then the function takes a batch of `n` examples as input and can return a batch with `n` examples, or with an arbitrary number of examples. Note that the last batch may have less than `n` examples. A batch is a dictionary, e.g. a batch of `n` examples is `{"text": ["Hello there !"] * n}`. If the function is asynchronous, then `map` will run your function in parallel, with up to one thousand simulatenous calls. It is recommended to use a `asyncio.Semaphore` in your function if you want to set a maximum number of operations that can run at the same time. Args: function (`Callable`, *optional*, defaults to `None`): Function applied on-the-fly on the examples when you iterate on the dataset. It must have one of the following signatures: - `function(example: Dict[str, Any]) -> Dict[str, Any]` if `batched=False` and `with_indices=False` - `function(example: Dict[str, Any], idx: int) -> Dict[str, Any]` if `batched=False` and `with_indices=True` - `function(batch: Dict[str, List]) -> Dict[str, List]` if `batched=True` and `with_indices=False` - `function(batch: Dict[str, List], indices: List[int]) -> Dict[str, List]` if `batched=True` and `with_indices=True` For advanced usage, the function can also return a `pyarrow.Table`. If the function is asynchronous, then `map` will run your function in parallel. Moreover if your function returns nothing (`None`), then `map` will run your function and return the dataset unchanged. If no function is provided, default to identity function: `lambda x: x`. with_indices (`bool`, defaults to `False`): Provide example indices to `function`. Note that in this case the signature of `function` should be `def function(example, idx[, rank]): ...`. input_columns (`Optional[Union[str, List[str]]]`, defaults to `None`): The columns to be passed into `function` as positional arguments. If `None`, a dict mapping to all formatted columns is passed as one argument. batched (`bool`, defaults to `False`): Provide batch of examples to `function`. batch_size (`int`, *optional*, defaults to `1000`): Number of examples per batch provided to `function` if `batched=True`. `batch_size <= 0` or `batch_size == None` then provide the full dataset as a single batch to `function`. drop_last_batch (`bool`, defaults to `False`): Whether a last batch smaller than the batch_size should be dropped instead of being processed by the function. remove_columns (`[List[str]]`, *optional*, defaults to `None`): Remove a selection of columns while doing the mapping. Columns will be removed before updating the examples with the output of `function`, i.e. if `function` is adding columns with names in `remove_columns`, these columns will be kept. features (`[Features]`, *optional*, defaults to `None`): Feature types of the resulting dataset. fn_kwargs (`Dict`, *optional*, default `None`): Keyword arguments to be passed to `function`. Example: ```py >>> from datasets import load_dataset >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes", split="train", streaming=True) >>> def add_prefix(example): ... example["text"] = "Review: " + example["text"] ... return example >>> ds = ds.map(add_prefix) >>> list(ds.take(3)) [{'label': 1, 'text': 'Review: the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'}, {'label': 1, 'text': 'Review: the gorgeously elaborate continuation of " the lord of the rings " trilogy is so huge that a column of words cannot adequately describe co-writer/director peter jackson\'s expanded vision of j . r . r . tolkien\'s middle-earth .'}, {'label': 1, 'text': 'Review: effective but too-tepid biopic'}] ``` """ if isinstance(input_columns, str): input_columns = [input_columns] if isinstance(remove_columns, str): remove_columns = [remove_columns] if function is None: function = identity_func if fn_kwargs is None: fn_kwargs = {} ex_iterable = self._ex_iterable # no need to apply features if ex_iterable is typed and if there was no cast_column() input_features = ( None if (ex_iterable.is_typed and (self._info.features is None or self._info.features == ex_iterable.features)) else self._info.features ) if self._formatting and self._formatting.is_table: # apply formatting before iter_arrow to keep map examples iterable happy ex_iterable = FormattedExamplesIterable( ex_iterable, formatting=copy.deepcopy(self._formatting), features=input_features, token_per_repo_id=self._token_per_repo_id, ) ex_iterable = RebatchedArrowExamplesIterable( ex_iterable, batch_size=batch_size if batched else 1, drop_last_batch=drop_last_batch ) else: if self._formatting and self._ex_iterable.iter_arrow: ex_iterable = RebatchedArrowExamplesIterable( self._ex_iterable, batch_size=batch_size if batched else 1, drop_last_batch=drop_last_batch ) if self._formatting or input_features: # apply formatting after iter_arrow to avoid re-encoding the examples ex_iterable = FormattedExamplesIterable( ex_iterable, formatting=copy.deepcopy(self._formatting), features=input_features, token_per_repo_id=self._token_per_repo_id, ) ex_iterable = MappedExamplesIterable( ex_iterable, function=function, with_indices=with_indices, input_columns=input_columns, batched=batched, batch_size=batch_size, drop_last_batch=drop_last_batch, remove_columns=remove_columns, fn_kwargs=fn_kwargs, formatting=self._formatting, features=features, ) info = self.info.copy() info.features = features return IterableDataset( ex_iterable=ex_iterable, info=info, split=self._split, formatting=self._formatting, shuffling=copy.deepcopy(self._shuffling), distributed=copy.deepcopy(self._distributed), token_per_repo_id=self._token_per_repo_id, ) def filter( self, function: Optional[Callable] = None, with_indices=False, input_columns: Optional[Union[str, list[str]]] = None, batched: bool = False, batch_size: Optional[int] = 1000, fn_kwargs: Optional[dict] = None, ) -> "IterableDataset": """Apply a filter function to all the elements so that the dataset only includes examples according to the filter function. The filtering is done on-the-fly when iterating over the dataset. If the function is asynchronous, then `filter` will run your function in parallel, with up to one thousand simulatenous calls (configurable). It is recommended to use a `asyncio.Semaphore` in your function if you want to set a maximum number of operations that can run at the same time. Args: function (`Callable`): Callable with one of the following signatures: - `function(example: Dict[str, Any]) -> bool` if `with_indices=False, batched=False` - `function(example: Dict[str, Any], indices: int) -> bool` if `with_indices=True, batched=False` - `function(example: Dict[str, List]) -> List[bool]` if `with_indices=False, batched=True` - `function(example: Dict[str, List], indices: List[int]) -> List[bool]` if `with_indices=True, batched=True` If the function is asynchronous, then `filter` will run your function in parallel. If no function is provided, defaults to an always True function: `lambda x: True`. with_indices (`bool`, defaults to `False`): Provide example indices to `function`. Note that in this case the signature of `function` should be `def function(example, idx): ...`. input_columns (`str` or `List[str]`, *optional*): The columns to be passed into `function` as positional arguments. If `None`, a dict mapping to all formatted columns is passed as one argument. batched (`bool`, defaults to `False`): Provide batch of examples to `function`. batch_size (`int`, *optional*, default `1000`): Number of examples per batch provided to `function` if `batched=True`. fn_kwargs (`Dict`, *optional*, default `None`): Keyword arguments to be passed to `function`. Example: ```py >>> from datasets import load_dataset >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes", split="train", streaming=True) >>> ds = ds.filter(lambda x: x["label"] == 0) >>> list(ds.take(3)) [{'label': 0, 'movie_review': 'simplistic , silly and tedious .'}, {'label': 0, 'movie_review': "it's so laddish and juvenile , only teenage boys could possibly find it funny ."}, {'label': 0, 'movie_review': 'exploitative and largely devoid of the depth or sophistication that would make watching such a graphic treatment of the crimes bearable .'}] ``` """ if isinstance(input_columns, str): input_columns = [input_columns] # We need the examples to be decoded for certain feature types like Image or Audio, # format and type before filtering ex_iterable = self._ex_iterable if self._info.features or self._formatting: ex_iterable = FormattedExamplesIterable( ex_iterable, formatting=self._formatting, features=None if ex_iterable.is_typed else self._info.features, token_per_repo_id=self._token_per_repo_id, ) ex_iterable = FilteredExamplesIterable( ex_iterable, function=function, with_indices=with_indices, input_columns=input_columns, batched=batched, batch_size=batch_size, fn_kwargs=fn_kwargs, formatting=self._formatting, ) return IterableDataset( ex_iterable=ex_iterable, info=self._info, split=self._split, formatting=self._formatting, shuffling=copy.deepcopy(self._shuffling), distributed=copy.deepcopy(self._distributed), token_per_repo_id=self._token_per_repo_id, ) def shuffle( self, seed=None, generator: Optional[np.random.Generator] = None, buffer_size: int = 1000 ) -> "IterableDataset": """ Randomly shuffles the elements of this dataset. This dataset fills a buffer with `buffer_size` elements, then randomly samples elements from this buffer, replacing the selected elements with new elements. For perfect shuffling, a buffer size greater than or equal to the full size of the dataset is required. For instance, if your dataset contains 10,000 elements but `buffer_size` is set to 1000, then `shuffle` will initially select a random element from only the first 1000 elements in the buffer. Once an element is selected, its space in the buffer is replaced by the next (i.e. 1,001-st) element, maintaining the 1000 element buffer. If the dataset is made of several shards, it also does shuffle the order of the shards. However if the order has been fixed by using [`~datasets.IterableDataset.skip`] or [`~datasets.IterableDataset.take`] then the order of the shards is kept unchanged. Args: seed (`int`, *optional*, defaults to `None`): Random seed that will be used to shuffle the dataset. It is used to sample from the shuffle buffer and also to shuffle the data shards. generator (`numpy.random.Generator`, *optional*): Numpy random Generator to use to compute the permutation of the dataset rows. If `generator=None` (default), uses `np.random.default_rng` (the default BitGenerator (PCG64) of NumPy). buffer_size (`int`, defaults to `1000`): Size of the buffer. Example: ```py >>> from datasets import load_dataset >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes", split="train", streaming=True) >>> list(ds.take(3)) [{'label': 1, 'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'}, {'label': 1, 'text': 'the gorgeously elaborate continuation of " the lord of the rings " trilogy is so huge that a column of words cannot adequately describe co-writer/director peter jackson\'s expanded vision of j . r . r . tolkien\'s middle-earth .'}, {'label': 1, 'text': 'effective but too-tepid biopic'}] >>> shuffled_ds = ds.shuffle(seed=42) >>> list(shuffled_ds.take(3)) [{'label': 1, 'text': "a sports movie with action that's exciting on the field and a story you care about off it ."}, {'label': 1, 'text': 'at its best , the good girl is a refreshingly adult take on adultery . . .'}, {'label': 1, 'text': "sam jones became a very lucky filmmaker the day wilco got dropped from their record label , proving that one man's ruin may be another's fortune ."}] ``` """ if generator is None: generator = np.random.default_rng(seed) else: generator = deepcopy(generator) shuffling = ShufflingConfig(generator=generator, _original_seed=seed) return IterableDataset( ex_iterable=BufferShuffledExamplesIterable( self._ex_iterable, buffer_size=buffer_size, generator=generator ), info=self._info.copy(), split=self._split, formatting=self._formatting, shuffling=shuffling, distributed=copy.deepcopy(self._distributed), token_per_repo_id=self._token_per_repo_id, ) def set_epoch(self, epoch: int): self._epoch += epoch - self._epoch # update torch value in shared memory in-place def skip(self, n: int) -> "IterableDataset": """ Create a new [`IterableDataset`] that skips the first `n` elements. Args: n (`int`): Number of elements to skip. Example: ```py >>> from datasets import load_dataset >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes", split="train", streaming=True) >>> list(ds.take(3)) [{'label': 1, 'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'}, {'label': 1, 'text': 'the gorgeously elaborate continuation of " the lord of the rings " trilogy is so huge that a column of words cannot adequately describe co-writer/director peter jackson\'s expanded vision of j . r . r . tolkien\'s middle-earth .'}, {'label': 1, 'text': 'effective but too-tepid biopic'}] >>> ds = ds.skip(1) >>> list(ds.take(3)) [{'label': 1, 'text': 'the gorgeously elaborate continuation of " the lord of the rings " trilogy is so huge that a column of words cannot adequately describe co-writer/director peter jackson\'s expanded vision of j . r . r . tolkien\'s middle-earth .'}, {'label': 1, 'text': 'effective but too-tepid biopic'}, {'label': 1, 'text': 'if you sometimes like to go to the movies to have fun , wasabi is a good place to start .'}] ``` """ ex_iterable = SkipExamplesIterable( self._ex_iterable, n, block_sources_order_when_shuffling=self._shuffling is None, split_when_sharding=self._distributed is None, ) return IterableDataset( ex_iterable=ex_iterable, info=self._info.copy(), split=self._split, formatting=self._formatting, shuffling=copy.deepcopy(self._shuffling), distributed=copy.deepcopy(self._distributed), token_per_repo_id=self._token_per_repo_id, ) def repeat(self, num_times: Optional[int]) -> "IterableDataset": """ Create a new [`IterableDataset`] that repeats the underlying dataset `num_times` times. N.B. The effect of calling shuffle after repeat depends significantly on buffer size. With buffer_size 1, duplicate data is never seen in the same iteration, even after shuffling: ds.repeat(n).shuffle(seed=42, buffer_size=1) is equivalent to ds.shuffle(seed=42, buffer_size=1).repeat(n), and only shuffles shard orders within each iteration. With buffer size >= (num samples in the dataset * num_times), we get full shuffling of the repeated data, i.e. we can observe duplicates in the same iteration. Args: num_times (`int`) or (`None`): Number of times to repeat the dataset. If `None`, the dataset will be repeated indefinitely. Example: ```py >>> from datasets import load_dataset >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes", split="train") >>> ds = ds.take(2).repeat(2) >>> list(ds) [{'label': 1, 'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'}, {'label': 1, 'text': 'the gorgeously elaborate continuation of " the lord of the rings " trilogy is so huge that a column of words cannot adequately describe co-writer/director peter jackson\'s expanded vision of j . r . r . tolkien\'s middle-earth .'}, {'label': 1, 'text': 'effective but too-tepid biopic'}, {'label': 1, 'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'}, {'label': 1, 'text': 'the gorgeously elaborate continuation of " the lord of the rings " trilogy is so huge that a column of words cannot adequately describe co-writer/director peter jackson\'s expanded vision of j . r . r . tolkien\'s middle-earth .'}, {'label': 1, 'text': 'effective but too-tepid biopic'}] ``` """ return IterableDataset( ex_iterable=RepeatExamplesIterable(self._ex_iterable, num_times=num_times), info=self._info, split=self._split, formatting=self._formatting, shuffling=copy.deepcopy(self._shuffling), distributed=copy.deepcopy(self._distributed), token_per_repo_id=self._token_per_repo_id, ) def take(self, n: int) -> "IterableDataset": """ Create a new [`IterableDataset`] with only the first `n` elements. Args: n (`int`): Number of elements to take. Example: ```py >>> from datasets import load_dataset >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes", split="train", streaming=True) >>> small_ds = ds.take(2) >>> list(small_ds) [{'label': 1, 'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'}, {'label': 1, 'text': 'the gorgeously elaborate continuation of " the lord of the rings " trilogy is so huge that a column of words cannot adequately describe co-writer/director peter jackson\'s expanded vision of j . r . r . tolkien\'s middle-earth .'}] ``` """ ex_iterable = TakeExamplesIterable( self._ex_iterable, n, block_sources_order_when_shuffling=self._shuffling is None, split_when_sharding=self._distributed is None, ) return IterableDataset( ex_iterable=ex_iterable, info=self._info.copy(), split=self._split, formatting=self._formatting, shuffling=copy.deepcopy(self._shuffling), distributed=copy.deepcopy(self._distributed), token_per_repo_id=self._token_per_repo_id, ) def shard( self, num_shards: int, index: int, contiguous: bool = True, ) -> "IterableDataset": """Return the `index`-nth shard from dataset split into `num_shards` pieces. This shards deterministically. `dataset.shard(n, i)` splits the dataset into contiguous chunks, so it can be easily concatenated back together after processing. If `dataset.num_shards % n == l`, then the first `l` datasets each have `(dataset.num_shards // n) + 1` shards, and the remaining datasets have `(dataset.num_shards // n)` shards. `datasets.concatenate_datasets([dset.shard(n, i) for i in range(n)])` returns a dataset with the same order as the original. In particular, `dataset.shard(dataset.num_shards, i)` returns a dataset with 1 shard. Note: n should be less or equal to the number of shards in the dataset `dataset.num_shards`. On the other hand, `dataset.shard(n, i, contiguous=False)` contains all the shards of the dataset whose index mod `n = i`. Be sure to shard before using any randomizing operator (such as `shuffle`). It is best if the shard operator is used early in the dataset pipeline. Args: num_shards (`int`): How many shards to split the dataset into. index (`int`): Which shard to select and return. contiguous: (`bool`, defaults to `True`): Whether to select contiguous blocks of indices for shards. Example: ```py >>> from datasets import load_dataset >>> ds = load_dataset("amazon_polarity", split="train", streaming=True) >>> ds Dataset({ features: ['label', 'title', 'content'], num_shards: 4 }) >>> ds.shard(num_shards=2, index=0) Dataset({ features: ['label', 'title', 'content'], num_shards: 2 }) ``` """ ex_iterable = self._ex_iterable.shard_data_sources(num_shards=num_shards, index=index, contiguous=contiguous) return IterableDataset( ex_iterable=ex_iterable, info=self._info.copy(), split=self._split, formatting=self._formatting, shuffling=copy.deepcopy(self._shuffling), distributed=copy.deepcopy(self._distributed), token_per_repo_id=self._token_per_repo_id, ) @property def column_names(self) -> Optional[list[str]]: """Names of the columns in the dataset. Example: ```py >>> from datasets import load_dataset >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes", split="validation", streaming=True) >>> ds.column_names ['text', 'label'] ``` """ return list(self._info.features.keys()) if self._info.features is not None else None def add_column(self, name: str, column: Union[list, np.array]) -> "IterableDataset": """Add column to Dataset. Args: name (str): Column name. column (list or np.array): Column data to be added. Returns: `IterableDataset` """ return self.map(partial(add_column_fn, name=name, column=column), with_indices=True) def rename_column(self, original_column_name: str, new_column_name: str) -> "IterableDataset": """ Rename a column in the dataset, and move the features associated to the original column under the new column name. Args: original_column_name (`str`): Name of the column to rename. new_column_name (`str`): New name for the column. Returns: `IterableDataset`: A copy of the dataset with a renamed column. Example: ```py >>> from datasets import load_dataset >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes", split="train", streaming=True) >>> next(iter(ds)) {'label': 1, 'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'} >>> ds = ds.rename_column("text", "movie_review") >>> next(iter(ds)) {'label': 1, 'movie_review': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'} ``` """ return self.rename_columns({original_column_name: new_column_name}) def rename_columns(self, column_mapping: dict[str, str]) -> "IterableDataset": """ Rename several columns in the dataset, and move the features associated to the original columns under the new column names. Args: column_mapping (`Dict[str, str]`): A mapping of columns to rename to their new names Returns: `IterableDataset`: A copy of the dataset with renamed columns """ original_features = self._info.features.copy() if self._info.features else None ds_iterable = self.map( partial(_rename_columns_fn, column_mapping=column_mapping), remove_columns=list(column_mapping) ) if original_features is not None: ds_iterable._info.features = Features( { column_mapping[col] if col in column_mapping.keys() else col: feature for col, feature in original_features.items() } ) return ds_iterable def remove_columns(self, column_names: Union[str, list[str]]) -> "IterableDataset": """ Remove one or several column(s) in the dataset and the features associated to them. The removal is done on-the-fly on the examples when iterating over the dataset. Args: column_names (`Union[str, List[str]]`): Name of the column(s) to remove. Returns: `IterableDataset`: A copy of the dataset object without the columns to remove. Example: ```py >>> from datasets import load_dataset >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes", split="train", streaming=True) >>> next(iter(ds)) {'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .', 'label': 1} >>> ds = ds.remove_columns("label") >>> next(iter(ds)) {'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'} ``` """ original_features = self._info.features.copy() if self._info.features else None ds_iterable = self.map(remove_columns=column_names) if original_features is not None: ds_iterable._info.features = original_features.copy() for col, _ in original_features.items(): if col in column_names: del ds_iterable._info.features[col] return ds_iterable def select_columns(self, column_names: Union[str, list[str]]) -> "IterableDataset": """Select one or several column(s) in the dataset and the features associated to them. The selection is done on-the-fly on the examples when iterating over the dataset. Args: column_names (`Union[str, List[str]]`): Name of the column(s) to select. Returns: `IterableDataset`: A copy of the dataset object with selected columns. Example: ```py >>> from datasets import load_dataset >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes", split="train", streaming=True) >>> next(iter(ds)) {'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .', 'label': 1} >>> ds = ds.select_columns("text") >>> next(iter(ds)) {'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'} ``` """ if isinstance(column_names, str): column_names = [column_names] if self._info: info = copy.deepcopy(self._info) if self._info.features is not None: missing_columns = set(column_names) - set(self._info.features.keys()) if missing_columns: raise ValueError( f"Column name {list(missing_columns)} not in the " "dataset. Columns in the dataset: " f"{list(self._info.features.keys())}." ) info.features = Features({c: info.features[c] for c in column_names}) ex_iterable = SelectColumnsIterable(self._ex_iterable, column_names) return IterableDataset( ex_iterable=ex_iterable, info=info, split=self._split, formatting=self._formatting, shuffling=self._shuffling, distributed=self._distributed, token_per_repo_id=self._token_per_repo_id, ) def cast_column(self, column: str, feature: FeatureType) -> "IterableDataset": """Cast column to feature for decoding. Args: column (`str`): Column name. feature (`Feature`): Target feature. Returns: `IterableDataset` Example: ```py >>> from datasets import load_dataset, Audio >>> ds = load_dataset("PolyAI/minds14", name="en-US", split="train", streaming=True) >>> ds.features {'audio': Audio(sampling_rate=8000, mono=True, decode=True, id=None), 'english_transcription': Value(dtype='string', id=None), 'intent_class': ClassLabel(num_classes=14, names=['abroad', 'address', 'app_error', 'atm_limit', 'balance', 'business_loan', 'card_issues', 'cash_deposit', 'direct_debit', 'freeze', 'high_value_payment', 'joint_account', 'latest_transactions', 'pay_bill'], id=None), 'lang_id': ClassLabel(num_classes=14, names=['cs-CZ', 'de-DE', 'en-AU', 'en-GB', 'en-US', 'es-ES', 'fr-FR', 'it-IT', 'ko-KR', 'nl-NL', 'pl-PL', 'pt-PT', 'ru-RU', 'zh-CN'], id=None), 'path': Value(dtype='string', id=None), 'transcription': Value(dtype='string', id=None)} >>> ds = ds.cast_column("audio", Audio(sampling_rate=16000)) >>> ds.features {'audio': Audio(sampling_rate=16000, mono=True, decode=True, id=None), 'english_transcription': Value(dtype='string', id=None), 'intent_class': ClassLabel(num_classes=14, names=['abroad', 'address', 'app_error', 'atm_limit', 'balance', 'business_loan', 'card_issues', 'cash_deposit', 'direct_debit', 'freeze', 'high_value_payment', 'joint_account', 'latest_transactions', 'pay_bill'], id=None), 'lang_id': ClassLabel(num_classes=14, names=['cs-CZ', 'de-DE', 'en-AU', 'en-GB', 'en-US', 'es-ES', 'fr-FR', 'it-IT', 'ko-KR', 'nl-NL', 'pl-PL', 'pt-PT', 'ru-RU', 'zh-CN'], id=None), 'path': Value(dtype='string', id=None), 'transcription': Value(dtype='string', id=None)} ``` """ info = self._info.copy() info.features[column] = feature return IterableDataset( ex_iterable=self._ex_iterable, info=info, split=self._split, formatting=self._formatting, shuffling=copy.deepcopy(self._shuffling), distributed=copy.deepcopy(self._distributed), token_per_repo_id=self._token_per_repo_id, ) def cast( self, features: Features, ) -> "IterableDataset": """ Cast the dataset to a new set of features. Args: features ([`Features`]): New features to cast the dataset to. The name of the fields in the features must match the current column names. The type of the data must also be convertible from one type to the other. For non-trivial conversion, e.g. `string` <-> `ClassLabel` you should use [`~Dataset.map`] to update the Dataset. Returns: `IterableDataset`: A copy of the dataset with casted features. Example: ```py >>> from datasets import load_dataset, ClassLabel, Value >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes", split="train", streaming=True) >>> ds.features {'label': ClassLabel(names=['neg', 'pos'], id=None), 'text': Value(dtype='string', id=None)} >>> new_features = ds.features.copy() >>> new_features["label"] = ClassLabel(names=["bad", "good"]) >>> new_features["text"] = Value("large_string") >>> ds = ds.cast(new_features) >>> ds.features {'label': ClassLabel(names=['bad', 'good'], id=None), 'text': Value(dtype='large_string', id=None)} ``` """ info = self._info.copy() info.features = features return IterableDataset( ex_iterable=self._ex_iterable, info=info, split=self._split, formatting=self._formatting, shuffling=copy.deepcopy(self._shuffling), distributed=copy.deepcopy(self._distributed), token_per_repo_id=self._token_per_repo_id, ) def decode(self, enable: bool = True, num_threads: int = 0) -> "IterableDataset": """ Enable or disable the dataset features decoding for audio, image, video. When enabled (default), media types are decoded: * audio -> dict of "array" and "sampling_rate" and "path" * image -> PIL.Image * video -> torchvision.io.VideoReader You can enable multithreading using `num_threads`. This is especially useful to speed up remote data streaming. However it can be slower than `num_threads=0` for local data on fast disks. Disabling decoding is useful if you want to iterate on the paths or bytes of the media files without actually decoding their content. To disable decoding you can use `.decode(False)`, which is equivalent to calling `.cast()` or `.cast_column()` with all the Audio, Image and Video types set to `decode=False`. Args: enable (`bool`, defaults to `True`): Enable or disable features decoding. num_threads (`int`, defaults to `0`): Enable multithreading for features decoding. Returns: `IterableDataset`: A copy of the dataset with casted features. Examples: Disable decoding: ```py >>> from datasets import load_dataset >>> ds = load_dataset("sshh12/planet-textures", split="train", streaming=True) >>> next(iter(ds)) {'image': , 'text': 'A distant celestial object with an icy crust, displaying a light blue shade, covered with round pits and rugged terrains.'} >>> ds = ds.decode(False) >>> ds.features {'image': Image(mode=None, decode=False, id=None), 'text': Value(dtype='string', id=None)} >>> next(iter(ds)) { 'image': { 'path': 'hf://datasets/sshh12/planet-textures@69dc4cef7a5c4b2cfe387727ec8ea73d4bff7302/train/textures/0000.png', 'bytes': None }, 'text': 'A distant celestial object with an icy crust, displaying a light blue shade, covered with round pits and rugged terrains.' } ``` Speed up streaming with multithreading: ```py >>> import os >>> from datasets import load_dataset >>> from tqdm import tqdm >>> ds = load_dataset("sshh12/planet-textures", split="train", streaming=True) >>> num_threads = min(32, (os.cpu_count() or 1) + 4) >>> ds = ds.decode(num_threads=num_threads) >>> for _ in tqdm(ds): # 20 times faster ! ... ... ``` """ if not self.features: raise ValueError( "Features decoding is only available for datasets with known features, but features are Unknown. " "Please set the datasets features with `ds = ds.cast(features)`." ) ds = self def set_decoding(decode: bool, feature): if hasattr(feature, "decode"): feature.decode = decode if enable and num_threads > 0: disabled_decoding_features = self.features.copy() enabled_decoding_features = self.features.copy() _visit(disabled_decoding_features, partial(set_decoding, False)) _visit(enabled_decoding_features, partial(set_decoding, True)) ds = ds.cast(disabled_decoding_features) pool = multiprocessing.pool.ThreadPool(num_threads) func = partial(_apply_async, pool, enabled_decoding_features.decode_example) ds = ds.map(func, features=enabled_decoding_features) assert isinstance(ds._ex_iterable, MappedExamplesIterable) ds._ex_iterable.max_num_running_async_map_functions_in_parallel = 2 * num_threads else: features = ds.features.copy() _visit(features, partial(set_decoding, enable)) ds = ds.cast(features) return ds def _step(self, step: int, offset: int) -> "IterableDataset": ex_iterable = StepExamplesIterable(self._ex_iterable, step=step, offset=offset) return IterableDataset( ex_iterable=ex_iterable, info=self._info.copy(), split=self._split, formatting=self._formatting, shuffling=copy.deepcopy(self._shuffling), distributed=copy.deepcopy(self._distributed), token_per_repo_id=self._token_per_repo_id, ) def _resolve_features(self): if self.features is not None: return self elif self._ex_iterable.is_typed: features = self._ex_iterable.features else: features = _infer_features_from_batch(self.with_format(None)._head()) info = self.info.copy() info.features = features return IterableDataset( ex_iterable=self._ex_iterable, info=info, split=self._split, formatting=self._formatting, shuffling=copy.deepcopy(self._shuffling), distributed=copy.deepcopy(self._distributed), token_per_repo_id=self._token_per_repo_id, ) def batch(self, batch_size: int, drop_last_batch: bool = False) -> "IterableDataset": """ Group samples from the dataset into batches. Args: batch_size (`int`): The number of samples in each batch. drop_last_batch (`bool`, defaults to `False`): Whether to drop the last incomplete batch. Example: ```py >>> ds = load_dataset("some_dataset", streaming=True) >>> batched_ds = ds.batch(batch_size=32) ``` """ def batch_fn(unbatched): return {k: [v] for k, v in unbatched.items()} if self.features: features = Features({col: [feature] for col, feature in self.features.items()}) else: features = None return self.map( batch_fn, batched=True, batch_size=batch_size, drop_last_batch=drop_last_batch, features=features ) def _concatenate_iterable_datasets( dsets: list[IterableDataset], info: Optional[DatasetInfo] = None, split: Optional[NamedSplit] = None, axis: int = 0, ) -> IterableDataset: """ Converts a list of `IterableDataset` with the same schema into a single `IterableDataset`. Missing data are filled with None values. Args: dsets (`List[datasets.IterableDataset]`): List of Datasets to concatenate. info (`DatasetInfo`, optional): Dataset information, like description, citation, etc. split (`NamedSplit`, optional): Name of the dataset split. axis (``{0, 1}``, default ``0``, meaning over rows): Axis to concatenate over, where ``0`` means over rows (vertically) and ``1`` means over columns (horizontally). *New in version 1.6.0* Example: ```py >>> ds3 = _concatenate_iterable_datasets([ds1, ds2]) ``` """ dsets = [d._resolve_features() for d in dsets] # Perform checks (and a potentional cast if axis=0) if axis == 0: _check_if_features_can_be_aligned([dset.features for dset in dsets]) else: _check_column_names([col_name for dset in dsets for col_name in dset.features]) # TODO: improve this to account for a mix of ClassLabel and Value for example # right now it would keep the type of the first dataset in the list features = Features( {k: v for features in _align_features([dset.features for dset in dsets]) for k, v in features.items()} ) ex_iterables = [copy.deepcopy(d._ex_iterable) for d in dsets] if axis == 0: ex_iterable = VerticallyConcatenatedMultiSourcesExamplesIterable(ex_iterables) else: ex_iterable = HorizontallyConcatenatedMultiSourcesExamplesIterable(ex_iterables) # Set new info - we update the features # setting the features also ensures to fill missing columns with None if info is None: info = DatasetInfo.from_merge([d.info for d in dsets]) else: info = info.copy() info.features = features # Get all the auth tokens per repository - in case the datasets come from different private repositories token_per_repo_id = {repo_id: token for dataset in dsets for repo_id, token in dataset._token_per_repo_id.items()} # Return new daset return IterableDataset(ex_iterable=ex_iterable, info=info, split=split, token_per_repo_id=token_per_repo_id) def _interleave_iterable_datasets( datasets: list[IterableDataset], probabilities: Optional[list[float]] = None, seed: Optional[int] = None, info: Optional[DatasetInfo] = None, split: Optional[NamedSplit] = None, stopping_strategy: Literal["first_exhausted", "all_exhausted"] = "first_exhausted", ) -> IterableDataset: """ Interleave several iterable datasets (sources) into a single iterable dataset. The new iterable dataset alternates between the sources to yield examples. If `probabilities = None` (default) the iterable dataset will cycles through the sources in order for each next example in the iteration. If `probabilities` is not `None, the iterable dataset will sample a random source according to the provided probabilities for each next examples in the iteration. Args: datasets (`List[IterableDataset]`): list of datasets to interleave probabilities (`List[float]`, optional, default None): If specified, the new iterable dataset samples examples from one source at a time according to these probabilities. seed (`int`, optional, default None): The random seed used to choose a source for each example. stopping_strategy (`str`, defaults to `first_exhausted`): Two strategies are proposed right now. By default, `first_exhausted` is an undersampling strategy, i.e the dataset construction is stopped as soon as one dataset has ran out of samples. If the strategy is `all_exhausted`, we use an oversampling strategy, i.e the dataset construction is stopped as soon as every samples of every dataset has been added at least once. Note that if the strategy is `all_exhausted`, the interleaved dataset size can get enormous: - with no probabilities, the resulting dataset will have max_length_datasets*nb_dataset samples. - with given probabilities, the resulting dataset will have more samples if some datasets have really low probability of visiting. Output: `datasets.IterableDataset` """ datasets = [d._resolve_features() for d in datasets] # Perform checks _check_if_features_can_be_aligned([dset.features for dset in datasets]) # TODO: improve this to account for a mix of ClassLabel and Value for example # right now it would keep the type of the first dataset in the list features = Features( {k: v for features in _align_features([dset.features for dset in datasets]) for k, v in features.items()} ) ex_iterables = [copy.deepcopy(d._ex_iterable) for d in datasets] # Use cycling or random cycling of sources if probabilities is None: ex_iterable = CyclingMultiSourcesExamplesIterable(ex_iterables, stopping_strategy=stopping_strategy) else: generator = np.random.default_rng(seed) ex_iterable = RandomlyCyclingMultiSourcesExamplesIterable( ex_iterables, generator=generator, probabilities=probabilities, stopping_strategy=stopping_strategy ) # Set new info - we update the features # setting the features also ensures to fill missing columns with None if info is None: info = DatasetInfo.from_merge([d.info for d in datasets]) else: info = info.copy() info.features = features # Get all the auth tokens per repository - in case the datasets come from different private repositories token_per_repo_id = { repo_id: token for dataset in datasets for repo_id, token in dataset._token_per_repo_id.items() } # Return new daset return IterableDataset(ex_iterable=ex_iterable, info=info, split=split, token_per_repo_id=token_per_repo_id) def _split_by_node_iterable_dataset(dataset: IterableDataset, rank: int, world_size: int) -> IterableDataset: """ Split an iterable dataset for the node at rank `rank` in a pool of nodes of size `world_size`. If the dataset has a number of shards that is a factor of `world_size` (i.e. if `dataset.num_shards % world_size == 0`), then the shards are evenly assigned across the nodes, which is the most optimized. Otherwise, each node keeps 1 example out of `world_size`, skipping the other examples. Args: dataset ([`IterableDataset`]): The iterable dataset to split by node. rank (`int`): Rank of the current node. world_size (`int`): Total number of nodes. Returns: [`IterableDataset`]: The iterable dataset to be used on the node at rank `rank`. """ if dataset._distributed: rank = world_size * dataset._distributed.rank + rank world_size = world_size * dataset._distributed.world_size distributed = DistributedConfig(rank=rank, world_size=world_size) return IterableDataset( ex_iterable=dataset._ex_iterable, info=dataset._info.copy(), split=dataset._split, formatting=dataset._formatting, shuffling=copy.deepcopy(dataset._shuffling), distributed=distributed, token_per_repo_id=dataset._token_per_repo_id, ) async def _apply_async(pool, func, x): future = pool.apply_async(func, (x,)) while True: if future.ready(): return future.get() else: await asyncio.sleep(0)