from typing import Any, Dict, Iterable, Iterator, Optional, TypeVar from .pytorch import IterableDataset from .utils import PipelineStage T = TypeVar('T') Sample = Dict[str, Any] class MockDataset(IterableDataset): sample: Any length: int def __init__(self, sample: Any, length: int) -> None: ... def __iter__(self) -> Iterator[Any]: ... class repeatedly(IterableDataset, PipelineStage): source: Any length: Optional[int] nbatches: Optional[int] nepochs: Optional[int] def __init__(self, source: Any, nepochs: Optional[int] = None, nbatches: Optional[int] = None, length: Optional[int] = None) -> None: ... def invoke(self, source: Iterable[T]) -> Iterator[T]: ... class with_epoch(IterableDataset): length: int source: Optional[Iterator[Any]] def __init__(self, dataset: Any, length: int) -> None: ... def __getstate__(self) -> Dict[str, Any]: ... def invoke(self, dataset: Iterable[T]) -> Iterator[T]: ... class with_length(IterableDataset, PipelineStage): dataset: Any length: int def __init__(self, dataset: Any, length: int) -> None: ... def invoke(self, dataset: Iterable[T]) -> Iterator[T]: ... def __len__(self) -> int: ...