# Copyright 2020-2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass, field from typing import Optional from transformers import TrainingArguments @dataclass class PRMConfig(TrainingArguments): r""" Configuration class for the [`PRMTrainer`]. Using [`~transformers.HfArgumentParser`] we can turn this class into [argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the command line. Parameters: learning_rate (`float`, *optional*, defaults to `1e-5`): Initial learning rate for [`AdamW`] optimizer. The default value replaces that of [`~transformers.TrainingArguments`]. max_length (`int` or `None`, *optional*, defaults to `1024`): Maximum length of the sequences (prompt + completion) used for truncation. max_prompt_length (`int` or `None`, *optional*, defaults to `512`): Maximum length of the prompt used for truncation. max_completion_length (`int` or `None`, *optional*, defaults to `None`): Maximum length of the completion used for truncation. The completion is the concatenation of the steps. disable_dropout (`bool`, *optional*, defaults to `True`): Whether to disable dropout in the model. step_separator (`str`, *optional*, defaults to `"\n"`): Separator used to separate each step of the reasoning process. train_on_last_step_only (`bool`, *optional*, defaults to `False`): Whether to train only on the last step. dataset_num_proc (`int`, *optional*, defaults to `None`): Number of processes to use for processing the dataset. """ learning_rate: float = field( default=1e-5, metadata={ "help": "Initial learning rate for `AdamW` optimizer. The default value replaces that of " "`TrainingArguments`." }, ) max_length: Optional[int] = field( default=1024, metadata={"help": "Maximum length of the sequences (prompt + completion) used for truncation."}, ) max_prompt_length: Optional[int] = field( default=512, metadata={"help": "Maximum length of the prompt used for truncation."}, ) max_completion_length: Optional[int] = field( default=None, metadata={ "help": "Maximum length of the completion used for truncation. The completion is the concatenation of the " "steps." }, ) disable_dropout: bool = field( default=True, metadata={"help": "Whether to disable dropout in the model and reference model."}, ) step_separator: str = field( default="\n", metadata={"help": "Separator used to separate each step of the reasoning process."}, ) train_on_last_step_only: bool = field( default=False, metadata={"help": "Whether to train only on the last step."}, ) dataset_num_proc: Optional[int] = field( default=None, metadata={"help": "Number of processes to use for processing the dataset."}, )