# Copyright 2020-2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import textwrap from typing import Any, Callable, Optional, Union import jinja2 import torch import torch.nn as nn import torch.nn.functional as F from datasets import Dataset, IterableDataset from transformers import ( BaseImageProcessor, FeatureExtractionMixin, PreTrainedModel, PreTrainedTokenizerBase, ProcessorMixin, TrainerCallback, is_wandb_available, ) from transformers.trainer_utils import EvalPrediction from transformers.training_args import OptimizerNames from transformers.utils import is_apex_available from ..data_utils import is_conversational, maybe_apply_chat_template from ..models.modeling_base import GeometricMixtureWrapper from ..models.utils import unwrap_model_for_generation from .judges import BasePairwiseJudge from .nash_md_config import NashMDConfig from .online_dpo_trainer import OnlineDPOTrainer from .utils import ( SIMPLE_CHAT_TEMPLATE, empty_cache, generate_model_card, get_comet_experiment_url, get_reward, selective_log_softmax, truncate_right, ) if is_apex_available(): from apex import amp if is_wandb_available(): import wandb class NashMDTrainer(OnlineDPOTrainer): r""" Initialize NashMDTrainer as a subclass of [`OnlineDPOConfig`]. Args: model (`transformers.PreTrainedModel`): The model to train, preferably an `AutoModelForCausalLM`. ref_model (`PreTrainedModelWrapper`): Hugging Face transformer model with a casual language modelling head. Used for implicit reward computation and loss. If no reference model is provided, the trainer will create a reference model with the same architecture as the model to be optimized. reward_model (`transformers.PreTrainedModel`): The reward model to score completions with, preferably an `AutoModelForSequenceClassification`. judge (`BasePairwiseJudge`): The judge to use for pairwise comparison of model completions. args (`NashMDConfig`): The NashMD config arguments to use for training. data_collator (`transformers.DataCollator`): The data collator to use for training. If None is specified, the default data collator (`DPODataCollatorWithPadding`) will be used which will pad the sequences to the maximum length of the sequences in the batch, given a dataset of paired sequences. train_dataset (`datasets.Dataset`): The dataset to use for training. eval_dataset (`datasets.Dataset`): The dataset to use for evaluation. processing_class (`PreTrainedTokenizerBase` or `BaseImageProcessor` or `FeatureExtractionMixin` or `ProcessorMixin`, *optional*): Processing class used to process the data. If provided, will be used to automatically process the inputs for the model, and it will be saved along the model to make it easier to rerun an interrupted training or reuse the fine-tuned model. peft_config (`dict`): The peft config to use for training. compute_metrics (`Callable[[EvalPrediction], dict]`, *optional*): The function to use to compute the metrics. Must take a `EvalPrediction` and return a dictionary string to metric values. callbacks (`list[transformers.TrainerCallback]`): The callbacks to use for training. optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`): The optimizer and scheduler to use for training. preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`): The function to use to preprocess the logits before computing the metrics. """ _tag_names = ["trl", "nash-md"] def __init__( self, model: Union[PreTrainedModel, nn.Module] = None, ref_model: Union[PreTrainedModel, nn.Module] = None, reward_model: Union[PreTrainedModel, nn.Module, None] = None, judge: Optional[BasePairwiseJudge] = None, args: Optional[NashMDConfig] = None, data_collator: Optional[Callable] = None, train_dataset: Optional[Union[Dataset, IterableDataset]] = None, eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None, processing_class: Optional[ Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin] ] = None, peft_config: Optional[dict] = None, compute_metrics: Optional[Callable[[EvalPrediction], dict]] = None, callbacks: Optional[list[TrainerCallback]] = None, optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None), preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None, ) -> None: super().__init__( model=model, ref_model=ref_model, reward_model=reward_model, judge=judge, args=args, data_collator=data_collator, train_dataset=train_dataset, eval_dataset=eval_dataset, processing_class=processing_class, reward_processing_class=processing_class, # for now, NashMDTrainer can't use any reward model peft_config=peft_config, compute_metrics=compute_metrics, callbacks=callbacks, optimizers=optimizers, preprocess_logits_for_metrics=preprocess_logits_for_metrics, ) self._mixture_coef = self.args.mixture_coef # Overwrite the stats dictionary to include NashMD specific statistics self.stats = { # Remove "non_score_reward", "rlhf_reward", "scores_margin" # Add "mixture_coef" "loss/kl": [], "objective/entropy": [], "loss/score": [], "rewards/probabilities": [], "rewards/accuracies": [], "rewards/margins": [], "logps/chosen": [], "logps/rejected": [], "val/model_contain_eos_token": [], "val/ref_contain_eos_token": [], "beta": [], "mixture_coef": [], } if self.reward_model is not None: self.stats["rewards/chosen"] = [] self.stats["rewards/rejected"] = [] @property def mixture_coef(self): if isinstance(self._mixture_coef, list): epoch = self.state.epoch return self._mixture_coef[epoch] if epoch < len(self._mixture_coef) else self._mixture_coef[-1] else: return self._mixture_coef def _generate_completions(self, model, prompts): with unwrap_model_for_generation(model, self.accelerator) as unwrapped_model: model_output = unwrapped_model.generate( input_ids=prompts["input_ids"], attention_mask=prompts["attention_mask"], generation_config=self.generation_config, ) ref_model = model if self.ref_model is None else self.ref_model with torch.no_grad(), unwrap_model_for_generation(ref_model, self.accelerator) as unwrapped_ref_model: mixture_model = GeometricMixtureWrapper( model=unwrapped_model, ref_model=unwrapped_ref_model, generation_config=self.generation_config, mixture_coef=self.mixture_coef, device=self.accelerator.device, ) mixture_output = mixture_model.generate( input_ids=prompts["input_ids"], attention_mask=prompts["attention_mask"], generation_config=self.generation_config, ) return model_output, mixture_output def _process_completions(self, model_output, mixture_output, prompts): context_length = prompts["input_ids"].shape[1] # Process model completions model_completion_ids = model_output[:, context_length:] model_completion_ids, model_completion_mask = truncate_right( model_completion_ids, self.processing_class.eos_token_id, self.processing_class.pad_token_id ) model_data = { "input_ids": torch.cat((prompts["input_ids"], model_completion_ids), dim=1), "attention_mask": torch.cat((prompts["attention_mask"], model_completion_mask), dim=1), "raw": prompts["raw"], } # Process reference model completions mixture_completion_ids = mixture_output[:, context_length:] mixture_completion_ids, mixture_completion_mask = truncate_right( mixture_completion_ids, self.processing_class.eos_token_id, self.processing_class.pad_token_id ) mixture_data = { "input_ids": torch.cat((prompts["input_ids"], mixture_completion_ids), dim=1), "attention_mask": torch.cat((prompts["attention_mask"], mixture_completion_mask), dim=1), "raw": prompts["raw"], } return model_data, mixture_data def _compute_rewards(self, model_data, mixture_data, context_length): with torch.no_grad(): _, model_scores, _ = get_reward( self.reward_model, model_data["input_ids"], self.processing_class.pad_token_id, context_length ) _, mixture_scores, _ = get_reward( self.reward_model, mixture_data["input_ids"], self.processing_class.pad_token_id, context_length ) # Apply EOS penalty if needed if self.args.missing_eos_penalty is not None: model_contain_eos = torch.any(model_data["input_ids"] == self.processing_class.eos_token_id, dim=-1) mixture_contain_eos = torch.any(mixture_data["input_ids"] == self.processing_class.eos_token_id, dim=-1) model_scores[~model_contain_eos] -= self.args.missing_eos_penalty mixture_scores[~mixture_contain_eos] -= self.args.missing_eos_penalty return model_scores, mixture_scores def _compute_judge(self, model_data, mixture_data, context_length): prompts = model_data["raw"] model_data_completions = self.processing_class.batch_decode( model_data["input_ids"][:, context_length:], skip_special_tokens=True ) model_data_completions = [completion.strip() for completion in model_data_completions] mixture_data_completions = self.processing_class.batch_decode( mixture_data["input_ids"][:, context_length:], skip_special_tokens=True ) mixture_data_completions = [completion.strip() for completion in mixture_data_completions] if is_conversational({"prompt": prompts[0]}): model_data_completions = [ [{"role": "assistant", "content": completion}] for completion in model_data_completions ] environment = jinja2.Environment() template = environment.from_string(SIMPLE_CHAT_TEMPLATE) prompts = [template.render(messages=message) for message in prompts] model_data_completions = [template.render(messages=completion) for completion in model_data_completions] mixture_data_completions = [ [{"role": "assistant", "content": completion}] for completion in mixture_data_completions ] mixture_data_completions = [ template.render(messages=completion) for completion in mixture_data_completions ] probability = self.judge.judge( prompts, list(zip(model_data_completions, mixture_data_completions)), return_scores=True, ) return torch.tensor(probability, device=model_data["input_ids"].device) def _compute_logprobs(self, model, model_data, context_length): def compute_logprobs_for_data(m, data): output = m(data["input_ids"], attention_mask=data["attention_mask"]) logits = output.logits[:, context_length - 1 : -1] token_logprobs = selective_log_softmax(logits, data["input_ids"][:, context_length:]) return token_logprobs # Compute logprobs for model completions under the model model_logprobs_model_data = compute_logprobs_for_data(model, model_data) # Compute logprobs of model completions under the reference model with torch.no_grad(): if self.ref_model is None: with model.disable_adapter(): ref_logprobs_model_data = compute_logprobs_for_data(model, model_data) else: ref_logprobs_model_data = compute_logprobs_for_data(self.ref_model, model_data) # Mask padding tokens model_padding_mask = model_data["attention_mask"][:, context_length:] == 0 model_logprobs_model_data = model_logprobs_model_data.masked_fill(model_padding_mask, 0.0) ref_logprobs_model_data = ref_logprobs_model_data.masked_fill(model_padding_mask, 0.0) return (model_logprobs_model_data, ref_logprobs_model_data) def _compute_losses( self, model_logprobs_model_data, ref_logprobs_model_data, probability, ): # reinforce score where 0.5 is a control variate score = (probability - 0.5) * model_logprobs_model_data.sum(1) # kl divergence via reinforce with torch.no_grad(): log_ratio = model_logprobs_model_data - ref_logprobs_model_data kl_div_log = log_ratio.sum(1) kl_div_loss = (log_ratio * model_logprobs_model_data).sum(1) # final loss loss = self.beta * kl_div_loss - score return loss.mean(), score, kl_div_log def _log_statistics( self, model_data, mixture_data, model_logprobs_model_data, ref_logprobs_model_data, probability, score, kl_div, context_length, model_scores=None, mixture_scores=None, ): # Helper function to gather and compute mean def gather_mean(tensor): return self.accelerator.gather_for_metrics(tensor).mean().item() # Log score self.stats["loss/score"].append(gather_mean(score)) # Log KL divergence self.stats["loss/kl"].append(gather_mean(kl_div)) # Log logprobs model_logprobs_model_data_sum = model_logprobs_model_data.sum(1) ref_logprobs_model_data_sum = ref_logprobs_model_data.sum(1) self.stats["logps/chosen"].append(gather_mean(model_logprobs_model_data_sum)) self.stats["logps/rejected"].append(gather_mean(ref_logprobs_model_data_sum)) # Log rewards if self.reward_model is not None: self.stats["rewards/chosen"].append(gather_mean(model_scores)) self.stats["rewards/rejected"].append(gather_mean(mixture_scores)) # Log probabilities self.stats["rewards/probabilities"].append(gather_mean(probability)) # Calculate entropy for model data entropy_model_data = -model_logprobs_model_data.sum(1) self.stats["objective/entropy"].append(gather_mean(entropy_model_data)) # Calculate margins margin = model_logprobs_model_data_sum - ref_logprobs_model_data_sum self.stats["rewards/margins"].append(gather_mean(margin)) # Calculate accuracy accuracy = (margin > 0).float() self.stats["rewards/accuracies"].append(gather_mean(accuracy)) # Log EOS token statistics model_eos = (model_data["input_ids"][:, context_length:] == self.processing_class.eos_token_id).any(dim=1) mixture_eos = (mixture_data["input_ids"][:, context_length:] == self.processing_class.eos_token_id).any(dim=1) self.stats["val/model_contain_eos_token"].append(gather_mean(model_eos.float())) self.stats["val/ref_contain_eos_token"].append(gather_mean(mixture_eos.float())) # Log beta and mixture coef self.stats["beta"].append(self.beta) self.stats["mixture_coef"].append(self.mixture_coef) def training_step( self, model: nn.Module, inputs: dict[str, Union[torch.Tensor, Any]], num_items_in_batch: Optional[int] = None ) -> torch.Tensor: model.train() # Apply chat template and tokenize the input batch_size = len(next(iter(inputs.values()))) prompts = inputs["prompt"] inputs = [{k: v[i] for k, v in inputs.items()} for i in range(batch_size)] inputs = [maybe_apply_chat_template(x, self.processing_class) for x in inputs] inputs = [self.tokenize_row(x, self.model.config.is_encoder_decoder, self.processing_class) for x in inputs] inputs = self.data_collator(inputs) # need the prompt_ only inputs = self._prepare_inputs(inputs) context_length = inputs["prompt_input_ids"].shape[1] prompts = { "input_ids": inputs["prompt_input_ids"], "attention_mask": inputs["prompt_attention_mask"], "raw": prompts, } del inputs # Sample completions from both the model and the reference model model_output, mixture_output = self._generate_completions(model, prompts) # Process model completions model_data, mixture_data = self._process_completions(model_output, mixture_output, prompts) # Compute rewards if self.reward_model is not None: model_scores, mixture_scores = self._compute_rewards(model_data, mixture_data, context_length) # probability of the model data vs the mixture data probability = F.sigmoid(model_scores - mixture_scores) else: model_scores, mixture_scores = None, None probability = self._compute_judge(model_data, mixture_data, context_length) # Compute logprobs model_logprobs_model_data, ref_logprobs_model_data = self._compute_logprobs(model, model_data, context_length) # Compute loss loss, score, kl_div = self._compute_losses(model_logprobs_model_data, ref_logprobs_model_data, probability) # Log everything self._log_statistics( model_data, mixture_data, model_logprobs_model_data.detach(), ref_logprobs_model_data, probability, score.detach(), kl_div.detach(), context_length, model_scores, mixture_scores, ) if ( self.args.torch_empty_cache_steps is not None and self.state.global_step % self.args.torch_empty_cache_steps == 0 ): empty_cache() kwargs = {} # For LOMO optimizers you need to explicitly use the learning rate if self.args.optim in [OptimizerNames.LOMO, OptimizerNames.ADALOMO]: kwargs["learning_rate"] = self._get_learning_rate() if self.args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel training if self.use_apex: with amp.scale_loss(loss, self.optimizer) as scaled_loss: scaled_loss.backward() else: self.accelerator.backward(loss, **kwargs) return loss.detach() / self.args.gradient_accumulation_steps def create_model_card( self, model_name: Optional[str] = None, dataset_name: Optional[str] = None, tags: Union[str, list[str], None] = None, ): """ Creates a draft of a model card using the information available to the `Trainer`. Args: model_name (`str` or `None`, *optional*, defaults to `None`): Name of the model. dataset_name (`str` or `None`, *optional*, defaults to `None`): Name of the dataset used for training. tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`): Tags to be associated with the model card. """ if not self.is_world_process_zero(): return if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path): base_model = self.model.config._name_or_path else: base_model = None tags = tags or [] if isinstance(tags, str): tags = [tags] if hasattr(self.model.config, "unsloth_version"): tags.append("unsloth") citation = textwrap.dedent("""\ @inproceedings{munos2024nash, title = {{Nash Learning from Human Feedback}}, author = {R{\'{e}}mi Munos and Michal Valko and Daniele Calandriello and Mohammad Gheshlaghi Azar and Mark Rowland and Zhaohan Daniel Guo and Yunhao Tang and Matthieu Geist and Thomas Mesnard and C{\\^{o}}me Fiegel and Andrea Michi and Marco Selvi and Sertan Girgin and Nikola Momchev and Olivier Bachem and Daniel J. Mankowitz and Doina Precup and Bilal Piot}, year = 2024, booktitle = {Forty-first International Conference on Machine Learning, {ICML} 2024, Vienna, Austria, July 21-27, 2024}, publisher = {OpenReview.net}, url = {https://openreview.net/forum?id=Y5AmNYiyCQ} }""") model_card = generate_model_card( base_model=base_model, model_name=model_name, hub_model_id=self.hub_model_id, dataset_name=dataset_name, tags=tags, wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None, comet_url=get_comet_experiment_url(), trainer_name="Nash-MD", trainer_citation=citation, paper_title="Nash Learning from Human Feedback", paper_id="2312.00886", ) model_card.save(os.path.join(self.args.output_dir, "README.md"))