# Copyright 2020-2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys from dataclasses import dataclass, field from typing import Any, Optional from transformers import is_bitsandbytes_available from ..core import flatten_dict @dataclass class AlignPropConfig: r""" Configuration class for the [`AlignPropTrainer`]. Using [`~transformers.HfArgumentParser`] we can turn this class into [argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the command line. Parameters: exp_name (`str`, *optional*, defaults to `os.path.basename(sys.argv[0])[: -len(".py")]`): Name of this experiment (defaults to the file name without the extension). run_name (`str`, *optional*, defaults to `""`): Name of this run. seed (`int`, *optional*, defaults to `0`): Random seed for reproducibility. log_with (`str` or `None`, *optional*, defaults to `None`): Log with either `"wandb"` or `"tensorboard"`. Check [tracking](https://huggingface.co/docs/accelerate/usage_guides/tracking) for more details. log_image_freq (`int`, *optional*, defaults to `1`): Frequency for logging images. tracker_kwargs (`dict[str, Any]`, *optional*, defaults to `{}`): Keyword arguments for the tracker (e.g., `wandb_project`). accelerator_kwargs (`dict[str, Any]`, *optional*, defaults to `{}`): Keyword arguments for the accelerator. project_kwargs (`dict[str, Any]`, *optional*, defaults to `{}`): Keyword arguments for the accelerator project config (e.g., `logging_dir`). tracker_project_name (`str`, *optional*, defaults to `"trl"`): Name of project to use for tracking. logdir (`str`, *optional*, defaults to `"logs"`): Top-level logging directory for checkpoint saving. num_epochs (`int`, *optional*, defaults to `100`): Number of epochs to train. save_freq (`int`, *optional*, defaults to `1`): Number of epochs between saving model checkpoints. num_checkpoint_limit (`int`, *optional*, defaults to `5`): Number of checkpoints to keep before overwriting old ones. mixed_precision (`str`, *optional*, defaults to `"fp16"`): Mixed precision training. allow_tf32 (`bool`, *optional*, defaults to `True`): Allow `tf32` on Ampere GPUs. resume_from (`str`, *optional*, defaults to `""`): Path to resume training from a checkpoint. sample_num_steps (`int`, *optional*, defaults to `50`): Number of sampler inference steps. sample_eta (`float`, *optional*, defaults to `1.0`): Eta parameter for the DDIM sampler. sample_guidance_scale (`float`, *optional*, defaults to `5.0`): Classifier-free guidance weight. train_batch_size (`int`, *optional*, defaults to `1`): Batch size for training. train_use_8bit_adam (`bool`, *optional*, defaults to `False`): Whether to use the 8bit Adam optimizer from `bitsandbytes`. train_learning_rate (`float`, *optional*, defaults to `1e-3`): Learning rate. train_adam_beta1 (`float`, *optional*, defaults to `0.9`): Beta1 for Adam optimizer. train_adam_beta2 (`float`, *optional*, defaults to `0.999`): Beta2 for Adam optimizer. train_adam_weight_decay (`float`, *optional*, defaults to `1e-4`): Weight decay for Adam optimizer. train_adam_epsilon (`float`, *optional*, defaults to `1e-8`): Epsilon value for Adam optimizer. train_gradient_accumulation_steps (`int`, *optional*, defaults to `1`): Number of gradient accumulation steps. train_max_grad_norm (`float`, *optional*, defaults to `1.0`): Maximum gradient norm for gradient clipping. negative_prompts (`str` or `None`, *optional*, defaults to `None`): Comma-separated list of prompts to use as negative examples. truncated_backprop_rand (`bool`, *optional*, defaults to `True`): If `True`, randomized truncation to different diffusion timesteps is used. truncated_backprop_timestep (`int`, *optional*, defaults to `49`): Absolute timestep to which the gradients are backpropagated. Used only if `truncated_backprop_rand=False`. truncated_rand_backprop_minmax (`tuple[int, int]`, *optional*, defaults to `(0, 50)`): Range of diffusion timesteps for randomized truncated backpropagation. push_to_hub (`bool`, *optional*, defaults to `False`): Whether to push the final model to the Hub. """ exp_name: str = field( default=os.path.basename(sys.argv[0])[: -len(".py")], metadata={"help": "Name of this experiment (defaults to the file name without the extension)."}, ) run_name: str = field(default="", metadata={"help": "Name of this run."}) seed: int = field(default=0, metadata={"help": "Random seed for reproducibility."}) log_with: Optional[str] = field( default=None, metadata={"help": "Log with either 'wandb' or 'tensorboard'.", "choices": ["wandb", "tensorboard"]}, ) log_image_freq: int = field(default=1, metadata={"help": "Frequency for logging images."}) tracker_kwargs: dict[str, Any] = field( default_factory=dict, metadata={"help": "Keyword arguments for the tracker (e.g., `wandb_project`)."}, ) accelerator_kwargs: dict[str, Any] = field( default_factory=dict, metadata={"help": "Keyword arguments for the accelerator."} ) project_kwargs: dict[str, Any] = field( default_factory=dict, metadata={"help": "Keyword arguments for the accelerator project config (e.g., `logging_dir`)."}, ) tracker_project_name: str = field(default="trl", metadata={"help": "Name of project to use for tracking."}) logdir: str = field(default="logs", metadata={"help": "Top-level logging directory for checkpoint saving."}) num_epochs: int = field(default=100, metadata={"help": "Number of epochs to train."}) save_freq: int = field(default=1, metadata={"help": "Number of epochs between saving model checkpoints."}) num_checkpoint_limit: int = field( default=5, metadata={"help": "Number of checkpoints to keep before overwriting old ones."} ) mixed_precision: str = field( default="fp16", metadata={ "help": "Mixed precision training. Possible values are 'fp16', 'bf16', 'none'.", "choices": ["fp16", "bf16", "none"], }, ) allow_tf32: bool = field(default=True, metadata={"help": "Allow `tf32` on Ampere GPUs."}) resume_from: str = field(default="", metadata={"help": "Path to resume training from a checkpoint."}) sample_num_steps: int = field(default=50, metadata={"help": "Number of sampler inference steps."}) sample_eta: float = field(default=1.0, metadata={"help": "Eta parameter for the DDIM sampler."}) sample_guidance_scale: float = field(default=5.0, metadata={"help": "Classifier-free guidance weight."}) train_batch_size: int = field(default=1, metadata={"help": "Batch size for training."}) train_use_8bit_adam: bool = field( default=False, metadata={"help": "Whether to use the 8bit Adam optimizer from `bitsandbytes`."} ) train_learning_rate: float = field(default=1e-3, metadata={"help": "Learning rate."}) train_adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for Adam optimizer."}) train_adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for Adam optimizer."}) train_adam_weight_decay: float = field(default=1e-4, metadata={"help": "Weight decay for Adam optimizer."}) train_adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon value for Adam optimizer."}) train_gradient_accumulation_steps: int = field( default=1, metadata={"help": "Number of gradient accumulation steps."} ) train_max_grad_norm: float = field(default=1.0, metadata={"help": "Maximum gradient norm for gradient clipping."}) negative_prompts: Optional[str] = field( default=None, metadata={"help": "Comma-separated list of prompts to use as negative examples."}, ) truncated_backprop_rand: bool = field( default=True, metadata={"help": "If `True`, randomized truncation to different diffusion timesteps is used."}, ) truncated_backprop_timestep: int = field( default=49, metadata={ "help": "Absolute timestep to which the gradients are backpropagated. Used only if " "`truncated_backprop_rand=False`." }, ) truncated_rand_backprop_minmax: tuple[int, int] = field( default=(0, 50), metadata={ "help": "Range of diffusion timesteps for randomized truncated backpropagation.", }, ) push_to_hub: bool = field(default=False, metadata={"help": "Whether to push the final model to the Hub."}) def to_dict(self): output_dict = {} for key, value in self.__dict__.items(): output_dict[key] = value return flatten_dict(output_dict) def __post_init__(self): if self.train_use_8bit_adam and not is_bitsandbytes_available(): raise ImportError( "You need to install bitsandbytes to use 8bit Adam. " "You can install it with `pip install bitsandbytes`." )