# Copyright 2020-2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import warnings from accelerate.commands.launch import launch_command, launch_command_parser from .scripts.chat import main as chat_main from .scripts.chat import make_parser as make_chat_parser from .scripts.dpo import make_parser as make_dpo_parser from .scripts.env import print_env from .scripts.grpo import make_parser as make_grpo_parser from .scripts.kto import make_parser as make_kto_parser from .scripts.sft import make_parser as make_sft_parser from .scripts.utils import TrlParser from .scripts.vllm_serve import main as vllm_serve_main from .scripts.vllm_serve import make_parser as make_vllm_serve_parser def main(): parser = TrlParser(prog="TRL CLI", usage="trl", allow_abbrev=False) # Add the subparsers subparsers = parser.add_subparsers(help="available commands", dest="command", parser_class=TrlParser) # Add the subparsers for every script make_chat_parser(subparsers) make_dpo_parser(subparsers) subparsers.add_parser("env", help="Print the environment information") make_grpo_parser(subparsers) make_kto_parser(subparsers) make_sft_parser(subparsers) make_vllm_serve_parser(subparsers) # Parse the arguments args = parser.parse_args() if args.command == "chat": (chat_args,) = parser.parse_args_and_config() chat_main(chat_args) if args.command == "dpo": # Get the default args for the launch command dpo_training_script = os.path.join(os.path.dirname(os.path.abspath(__file__)), "scripts", "dpo.py") args = launch_command_parser().parse_args([dpo_training_script]) # Feed the args to the launch command args.training_script_args = sys.argv[2:] # remove "trl" and "dpo" launch_command(args) # launch training elif args.command == "env": print_env() elif args.command == "grpo": # Get the default args for the launch command grpo_training_script = os.path.join(os.path.dirname(os.path.abspath(__file__)), "scripts", "grpo.py") args = launch_command_parser().parse_args([grpo_training_script]) # Feed the args to the launch command args.training_script_args = sys.argv[2:] # remove "trl" and "grpo" launch_command(args) # launch training elif args.command == "kto": # Get the default args for the launch command kto_training_script = os.path.join(os.path.dirname(os.path.abspath(__file__)), "scripts", "kto.py") args = launch_command_parser().parse_args([kto_training_script]) # Feed the args to the launch command args.training_script_args = sys.argv[2:] # remove "trl" and "kto" launch_command(args) # launch training elif args.command == "sft": # Get the default args for the launch command sft_training_script = os.path.join(os.path.dirname(os.path.abspath(__file__)), "scripts", "sft.py") args = launch_command_parser().parse_args([sft_training_script]) # Feed the args to the launch command args.training_script_args = sys.argv[2:] # remove "trl" and "sft" launch_command(args) # launch training elif args.command == "vllm-serve": (script_args,) = parser.parse_args_and_config() # Known issue: Using DeepSpeed with tensor_parallel_size=1 and data_parallel_size>1 may cause a crash when # launched via the CLI. Suggest running the module directly. # More information: https://github.com/vllm-project/vllm/issues/17079 if script_args.tensor_parallel_size == 1 and script_args.data_parallel_size > 1: warnings.warn( "Detected configuration: tensor_parallel_size=1 and data_parallel_size>1. This setup is known to " "cause a crash when using the `trl vllm-serve` CLI entry point. As a workaround, please run the " "server using the module path instead: `python -m trl.scripts.vllm_serve`", RuntimeWarning, ) vllm_serve_main(script_args) if __name__ == "__main__": main()