# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections.abc import Sequence from typing import Any, Optional, Union import torch from torch import Tensor from torchmetrics.metric import Metric from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE from torchmetrics.wrappers.abstract import WrapperMetric if not _MATPLOTLIB_AVAILABLE: __doctest_skip__ = ["MinMaxMetric.plot"] class MinMaxMetric(WrapperMetric): """Wrapper metric that tracks both the minimum and maximum of a scalar/tensor across an experiment. The min/max value will be updated each time ``.compute`` is called. Args: base_metric: The metric of which you want to keep track of its maximum and minimum values. kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info. Raises: ValueError If ``base_metric` argument is not a subclasses instance of ``torchmetrics.Metric`` Example:: >>> import torch >>> from torchmetrics.wrappers import MinMaxMetric >>> from torchmetrics.classification import BinaryAccuracy >>> from pprint import pprint >>> base_metric = BinaryAccuracy() >>> minmax_metric = MinMaxMetric(base_metric) >>> preds_1 = torch.Tensor([[0.1, 0.9], [0.2, 0.8]]) >>> preds_2 = torch.Tensor([[0.9, 0.1], [0.2, 0.8]]) >>> labels = torch.Tensor([[0, 1], [0, 1]]).long() >>> pprint(minmax_metric(preds_1, labels)) {'max': tensor(1.), 'min': tensor(1.), 'raw': tensor(1.)} >>> pprint(minmax_metric.compute()) {'max': tensor(1.), 'min': tensor(1.), 'raw': tensor(1.)} >>> minmax_metric.update(preds_2, labels) >>> pprint(minmax_metric.compute()) {'max': tensor(1.), 'min': tensor(0.7500), 'raw': tensor(0.7500)} """ full_state_update: Optional[bool] = True min_val: Tensor max_val: Tensor def __init__( self, base_metric: Metric, **kwargs: Any, ) -> None: super().__init__(**kwargs) if not isinstance(base_metric, Metric): raise ValueError( f"Expected base metric to be an instance of `torchmetrics.Metric` but received {base_metric}" ) self._base_metric = base_metric self.min_val = torch.tensor(float("inf")) self.max_val = torch.tensor(float("-inf")) def update(self, *args: Any, **kwargs: Any) -> None: """Update the underlying metric.""" self._base_metric.update(*args, **kwargs) def compute(self) -> dict[str, Tensor]: """Compute the underlying metric as well as max and min values for this metric. Returns a dictionary that consists of the computed value (``raw``), as well as the minimum (``min``) and maximum (``max``) values. """ val = self._base_metric.compute() if not self._is_suitable_val(val): raise RuntimeError(f"Returned value from base metric should be a float or scalar tensor, but got {val}.") self.max_val = val if self.max_val.to(val.device) < val else self.max_val.to(val.device) self.min_val = val if self.min_val.to(val.device) > val else self.min_val.to(val.device) return {"raw": val, "max": self.max_val, "min": self.min_val} def forward(self, *args: Any, **kwargs: Any) -> Any: """Use the original forward method of the base metric class.""" return super(WrapperMetric, self).forward(*args, **kwargs) def reset(self) -> None: """Set ``max_val`` and ``min_val`` to the initialization bounds and resets the base metric.""" super().reset() self._base_metric.reset() @staticmethod def _is_suitable_val(val: Union[float, Tensor]) -> bool: """Check whether min/max is a scalar value.""" if isinstance(val, (int, float)): return True if isinstance(val, Tensor): return val.numel() == 1 return False def plot( self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None ) -> _PLOT_OUT_TYPE: """Plot a single or multiple values from the metric. Args: val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. If no value is provided, will automatically call `metric.compute` and plot that result. ax: An matplotlib axis object. If provided will add plot to that axis Returns: Figure and Axes object Raises: ModuleNotFoundError: If `matplotlib` is not installed .. plot:: :scale: 75 >>> # Example plotting a single value >>> import torch >>> from torchmetrics.wrappers import MinMaxMetric >>> from torchmetrics.classification import BinaryAccuracy >>> metric = MinMaxMetric(BinaryAccuracy()) >>> metric.update(torch.randint(2, (20,)), torch.randint(2, (20,))) >>> fig_, ax_ = metric.plot() .. plot:: :scale: 75 >>> # Example plotting multiple values >>> import torch >>> from torchmetrics.wrappers import MinMaxMetric >>> from torchmetrics.classification import BinaryAccuracy >>> metric = MinMaxMetric(BinaryAccuracy()) >>> values = [ ] >>> for _ in range(3): ... values.append(metric(torch.randint(2, (20,)), torch.randint(2, (20,)))) >>> fig_, ax_ = metric.plot(values) """ return self._plot(val, ax)