# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # referenced from # Library Name: torchtext # Authors: torchtext authors and @sluks # Date: 2020-07-18 # Link: https://pytorch.org/text/_modules/torchtext/data/metrics.html#bleu_score from collections.abc import Sequence from typing import Any, Optional, Union from torch import Tensor from torchmetrics.functional.text.bleu import _bleu_score_update from torchmetrics.functional.text.sacre_bleu import _SacreBLEUTokenizer, _TokenizersLiteral from torchmetrics.text.bleu import BLEUScore from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE if not _MATPLOTLIB_AVAILABLE: __doctest_skip__ = ["SacreBLEUScore.plot"] class SacreBLEUScore(BLEUScore): """Calculate `BLEU score`_ of machine translated text with one or more references. This implementation follows the behaviour of `SacreBLEU`_. The SacreBLEU implementation differs from the NLTK BLEU implementation in tokenization techniques. As input to ``forward`` and ``update`` the metric accepts the following input: - ``preds`` (:class:`~Sequence`): An iterable of machine translated corpus - ``target`` (:class:`~Sequence`): An iterable of iterables of reference corpus As output of ``forward`` and ``compute`` the metric returns the following output: - ``sacre_bleu`` (:class:`~torch.Tensor`): A tensor with the SacreBLEU Score Args: n_gram: Gram value ranged from 1 to 4 smooth: Whether to apply smoothing, see `SacreBLEU`_ tokenize: Tokenization technique to be used. Choose between ``'none'``, ``'13a'``, ``'zh'``, ``'intl'``, ``'char'``, ``'ja-mecab'``, ``'ko-mecab'``, ``'flores101'`` and ``'flores200'``. lowercase: If ``True``, BLEU score over lowercased text is calculated. kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info. weights: Weights used for unigrams, bigrams, etc. to calculate BLEU score. If not provided, uniform weights are used. Raises: ValueError: If ``tokenize`` not one of 'none', '13a', 'zh', 'intl' or 'char' ValueError: If ``tokenize`` is set to 'intl' and `regex` is not installed ValueError: If a length of a list of weights is not ``None`` and not equal to ``n_gram``. Example: >>> from torchmetrics.text import SacreBLEUScore >>> preds = ['the cat is on the mat'] >>> target = [['there is a cat on the mat', 'a cat is on the mat']] >>> sacre_bleu = SacreBLEUScore() >>> sacre_bleu(preds, target) tensor(0.7598) Additional References: - Automatic Evaluation of Machine Translation Quality Using Longest Common Subsequence and Skip-Bigram Statistics by Chin-Yew Lin and Franz Josef Och `Machine Translation Evolution`_ """ is_differentiable: bool = False higher_is_better: bool = True full_state_update: bool = True plot_lower_bound: float = 0.0 plot_upper_bound: float = 1.0 def __init__( self, n_gram: int = 4, smooth: bool = False, tokenize: _TokenizersLiteral = "13a", lowercase: bool = False, weights: Optional[Sequence[float]] = None, **kwargs: Any, ) -> None: super().__init__(n_gram=n_gram, smooth=smooth, weights=weights, **kwargs) self.tokenizer = _SacreBLEUTokenizer(tokenize, lowercase) def update(self, preds: Sequence[str], target: Sequence[Sequence[str]]) -> None: """Update state with predictions and targets.""" self.preds_len, self.target_len = _bleu_score_update( preds, target, self.numerator, self.denominator, self.preds_len, self.target_len, self.n_gram, self.tokenizer, ) def plot( self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None ) -> _PLOT_OUT_TYPE: """Plot a single or multiple values from the metric. Args: val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. If no value is provided, will automatically call `metric.compute` and plot that result. ax: An matplotlib axis object. If provided will add plot to that axis Returns: Figure and Axes object Raises: ModuleNotFoundError: If `matplotlib` is not installed .. plot:: :scale: 75 >>> # Example plotting a single value >>> from torchmetrics.text import SacreBLEUScore >>> metric = SacreBLEUScore() >>> preds = ['the cat is on the mat'] >>> target = [['there is a cat on the mat', 'a cat is on the mat']] >>> metric.update(preds, target) >>> fig_, ax_ = metric.plot() .. plot:: :scale: 75 >>> # Example plotting multiple values >>> from torchmetrics.text import SacreBLEUScore >>> metric = SacreBLEUScore() >>> preds = ['the cat is on the mat'] >>> target = [['there is a cat on the mat', 'a cat is on the mat']] >>> values = [ ] >>> for _ in range(10): ... values.append(metric(preds, target)) >>> fig_, ax_ = metric.plot(values) """ return self._plot(val, ax)