# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections.abc import Sequence from typing import Any, Optional, Union import torch from torch import Tensor, tensor from torchmetrics.functional.regression.r2 import _r2_score_update from torchmetrics.functional.regression.rse import _relative_squared_error_compute from torchmetrics.metric import Metric from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE if not _MATPLOTLIB_AVAILABLE: __doctest_skip__ = ["RelativeSquaredError.plot"] class RelativeSquaredError(Metric): r"""Computes the relative squared error (RSE). .. math:: \text{RSE} = \frac{\sum_i^N(y_i - \hat{y_i})^2}{\sum_i^N(y_i - \overline{y})^2} Where :math:`y` is a tensor of target values with mean :math:`\overline{y}`, and :math:`\hat{y}` is a tensor of predictions. If num_outputs > 1, the returned value is averaged over all the outputs. As input to ``forward`` and ``update`` the metric accepts the following input: - ``preds`` (:class:`~torch.Tensor`): Predictions from model in float tensor with shape ``(N,)`` or ``(N, M)`` (multioutput) - ``target`` (:class:`~torch.Tensor`): Ground truth values in float tensor with shape ``(N,)`` or ``(N, M)`` (multioutput) As output of ``forward`` and ``compute`` the metric returns the following output: - ``rse`` (:class:`~torch.Tensor`): A tensor with the RSE score(s) Args: num_outputs: Number of outputs in multioutput setting squared: If True returns RSE value, if False returns RRSE value. kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info. Example: >>> from torchmetrics.regression import RelativeSquaredError >>> target = torch.tensor([3, -0.5, 2, 7]) >>> preds = torch.tensor([2.5, 0.0, 2, 8]) >>> relative_squared_error = RelativeSquaredError() >>> relative_squared_error(preds, target) tensor(0.0514) """ is_differentiable = True higher_is_better = False full_state_update = False sum_squared_error: Tensor sum_error: Tensor residual: Tensor total: Tensor def __init__( self, num_outputs: int = 1, squared: bool = True, **kwargs: Any, ) -> None: super().__init__(**kwargs) self.num_outputs = num_outputs self.add_state("sum_squared_error", default=torch.zeros(self.num_outputs), dist_reduce_fx="sum") self.add_state("sum_error", default=torch.zeros(self.num_outputs), dist_reduce_fx="sum") self.add_state("residual", default=torch.zeros(self.num_outputs), dist_reduce_fx="sum") self.add_state("total", default=tensor(0), dist_reduce_fx="sum") self.squared = squared def update(self, preds: Tensor, target: Tensor) -> None: """Update state with predictions and targets.""" sum_squared_error, sum_error, residual, total = _r2_score_update(preds, target) self.sum_squared_error += sum_squared_error self.sum_error += sum_error self.residual += residual self.total += total def compute(self) -> Tensor: """Computes relative squared error over state.""" return _relative_squared_error_compute( self.sum_squared_error, self.sum_error, self.residual, self.total, squared=self.squared ) def plot( self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None ) -> _PLOT_OUT_TYPE: """Plot a single or multiple values from the metric. Args: val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. If no value is provided, will automatically call `metric.compute` and plot that result. ax: An matplotlib axis object. If provided will add plot to that axis Returns: Figure and Axes object Raises: ModuleNotFoundError: If `matplotlib` is not installed .. plot:: :scale: 75 >>> from torch import randn >>> # Example plotting a single value >>> from torchmetrics.regression import RelativeSquaredError >>> metric = RelativeSquaredError() >>> metric.update(randn(10,), randn(10,)) >>> fig_, ax_ = metric.plot() .. plot:: :scale: 75 >>> from torch import randn >>> # Example plotting multiple values >>> from torchmetrics.regression import RelativeSquaredError >>> metric = RelativeSquaredError() >>> values = [] >>> for _ in range(10): ... values.append(metric(randn(10,), randn(10,))) >>> fig, ax = metric.plot(values) """ return self._plot(val, ax)