# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from torch import Tensor from torchmetrics.utilities.checks import _check_same_shape def _weighted_mean_absolute_percentage_error_update( preds: Tensor, target: Tensor, ) -> tuple[Tensor, Tensor]: """Update and returns variables required to compute Weighted Absolute Percentage Error. Check for same shape of input tensors. Args: preds: Predicted tensor target: Ground truth tensor """ _check_same_shape(preds, target) sum_abs_error = (preds - target).abs().sum() sum_scale = target.abs().sum() return sum_abs_error, sum_scale def _weighted_mean_absolute_percentage_error_compute( sum_abs_error: Tensor, sum_scale: Tensor, epsilon: float = 1.17e-06, ) -> Tensor: """Compute Weighted Absolute Percentage Error. Args: sum_abs_error: scalar with sum of absolute errors sum_scale: scalar with sum of target values epsilon: small float to prevent division by zero """ return sum_abs_error / torch.clamp(sum_scale, min=epsilon) def weighted_mean_absolute_percentage_error(preds: Tensor, target: Tensor) -> Tensor: r"""Compute weighted mean absolute percentage error (`WMAPE`_). The output of WMAPE metric is a non-negative floating point, where the optimal value is 0. It is computes as: .. math:: \text{WMAPE} = \frac{\sum_{t=1}^n | y_t - \hat{y}_t | }{\sum_{t=1}^n |y_t| } Where :math:`y` is a tensor of target values, and :math:`\hat{y}` is a tensor of predictions. Args: preds: estimated labels target: ground truth labels Return: Tensor with WMAPE. Example: >>> from torch import randn >>> preds = randn(20,) >>> target = randn(20,) >>> weighted_mean_absolute_percentage_error(preds, target) tensor(1.3967) """ sum_abs_error, sum_scale = _weighted_mean_absolute_percentage_error_update(preds, target) return _weighted_mean_absolute_percentage_error_compute(sum_abs_error, sum_scale)