# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Union import torch from torch import Tensor from torchmetrics.utilities.checks import _check_same_shape def _mean_squared_error_update(preds: Tensor, target: Tensor, num_outputs: int) -> tuple[Tensor, int]: """Update and returns variables required to compute Mean Squared Error. Check for same shape of input tensors. Args: preds: Predicted tensor target: Ground truth tensor num_outputs: Number of outputs in multioutput setting """ _check_same_shape(preds, target) if num_outputs == 1: preds = preds.view(-1) target = target.view(-1) diff = preds - target sum_squared_error = torch.sum(diff * diff, dim=0) return sum_squared_error, target.shape[0] def _mean_squared_error_compute(sum_squared_error: Tensor, num_obs: Union[int, Tensor], squared: bool = True) -> Tensor: """Compute Mean Squared Error. Args: sum_squared_error: Sum of square of errors over all observations num_obs: Number of predictions or observations squared: Returns RMSE value if set to False. Example: >>> preds = torch.tensor([0., 1, 2, 3]) >>> target = torch.tensor([0., 1, 2, 2]) >>> sum_squared_error, num_obs = _mean_squared_error_update(preds, target, num_outputs=1) >>> _mean_squared_error_compute(sum_squared_error, num_obs) tensor(0.2500) """ return sum_squared_error / num_obs if squared else torch.sqrt(sum_squared_error / num_obs) def mean_squared_error(preds: Tensor, target: Tensor, squared: bool = True, num_outputs: int = 1) -> Tensor: """Compute mean squared error. Args: preds: estimated labels target: ground truth labels squared: returns RMSE value if set to False num_outputs: Number of outputs in multioutput setting Return: Tensor with MSE Example: >>> from torchmetrics.functional.regression import mean_squared_error >>> x = torch.tensor([0., 1, 2, 3]) >>> y = torch.tensor([0., 1, 2, 2]) >>> mean_squared_error(x, y) tensor(0.2500) """ sum_squared_error, num_obs = _mean_squared_error_update(preds, target, num_outputs=num_outputs) return _mean_squared_error_compute(sum_squared_error, num_obs, squared=squared)