# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Union import torch from torch import Tensor, tensor from typing_extensions import Literal from torchmetrics.utilities import rank_zero_warn, reduce def _psnr_compute( sum_squared_error: Tensor, num_obs: Tensor, data_range: Tensor, base: float = 10.0, reduction: Literal["elementwise_mean", "sum", "none", None] = "elementwise_mean", ) -> Tensor: """Compute peak signal-to-noise ratio. Args: sum_squared_error: Sum of square of errors over all observations num_obs: Number of predictions or observations data_range: the range of the data. If None, it is determined from the data (max - min). ``data_range`` must be given when ``dim`` is not None. base: a base of a logarithm to use reduction: a method to reduce metric score over labels. - ``'elementwise_mean'``: takes the mean (default) - ``'sum'``: takes the sum - ``'none'`` or ``None``: no reduction will be applied Example: >>> preds = torch.tensor([[0.0, 1.0], [2.0, 3.0]]) >>> target = torch.tensor([[3.0, 2.0], [1.0, 0.0]]) >>> data_range = target.max() - target.min() >>> sum_squared_error, num_obs = _psnr_update(preds, target) >>> _psnr_compute(sum_squared_error, num_obs, data_range) tensor(2.5527) """ psnr_base_e = 2 * torch.log(data_range) - torch.log(sum_squared_error / num_obs) psnr_vals = psnr_base_e * (10 / torch.log(tensor(base))) return reduce(psnr_vals, reduction=reduction) def _psnr_update( preds: Tensor, target: Tensor, dim: Optional[Union[int, tuple[int, ...]]] = None, ) -> tuple[Tensor, Tensor]: """Update and return variables required to compute peak signal-to-noise ratio. Args: preds: Predicted tensor target: Ground truth tensor dim: Dimensions to reduce PSNR scores over provided as either an integer or a list of integers. Default is None meaning scores will be reduced across all dimensions. """ if not preds.is_floating_point(): preds = preds.to(torch.float32) if not target.is_floating_point(): target = target.to(torch.float32) if dim is None: sum_squared_error = torch.sum(torch.pow(preds - target, 2)) num_obs = tensor(target.numel(), device=target.device) return sum_squared_error, num_obs diff = preds - target sum_squared_error = torch.sum(diff * diff, dim=dim) dim_list = [dim] if isinstance(dim, int) else list(dim) if not dim_list: num_obs = tensor(target.numel(), device=target.device) else: num_obs = tensor(target.size(), device=target.device)[dim_list].prod() num_obs = num_obs.expand_as(sum_squared_error) return sum_squared_error, num_obs def peak_signal_noise_ratio( preds: Tensor, target: Tensor, data_range: Optional[Union[float, tuple[float, float]]] = None, base: float = 10.0, reduction: Literal["elementwise_mean", "sum", "none", None] = "elementwise_mean", dim: Optional[Union[int, tuple[int, ...]]] = None, ) -> Tensor: """Compute the peak signal-to-noise ratio. Args: preds: estimated signal target: groun truth signal data_range: the range of the data. If None, it is determined from the data (max - min). If a tuple is provided then the range is calculated as the difference and input is clamped between the values. The ``data_range`` must be given when ``dim`` is not None. base: a base of a logarithm to use reduction: a method to reduce metric score over labels. - ``'elementwise_mean'``: takes the mean (default) - ``'sum'``: takes the sum - ``'none'`` or None``: no reduction will be applied dim: Dimensions to reduce PSNR scores over provided as either an integer or a list of integers. Default is None meaning scores will be reduced across all dimensions. Return: Tensor with PSNR score Raises: ValueError: If ``dim`` is not ``None`` and ``data_range`` is not provided. Example: >>> from torchmetrics.functional.image import peak_signal_noise_ratio >>> pred = torch.tensor([[0.0, 1.0], [2.0, 3.0]]) >>> target = torch.tensor([[3.0, 2.0], [1.0, 0.0]]) >>> peak_signal_noise_ratio(pred, target) tensor(2.5527) .. attention:: Half precision is only support on GPU for this metric. """ if dim is None and reduction != "elementwise_mean": rank_zero_warn(f"The `reduction={reduction}` will not have any effect when `dim` is None.") if data_range is None: if dim is not None: # Maybe we could use `torch.amax(target, dim=dim) - torch.amin(target, dim=dim)` in PyTorch 1.7 to calculate # `data_range` in the future. raise ValueError("The `data_range` must be given when `dim` is not None.") data_range = target.max() - target.min() # type: ignore[assignment] elif isinstance(data_range, tuple): preds = torch.clamp(preds, min=data_range[0], max=data_range[1]) target = torch.clamp(target, min=data_range[0], max=data_range[1]) data_range = tensor(data_range[1] - data_range[0]) # type: ignore[assignment] else: data_range = tensor(float(data_range)) # type: ignore[assignment] sum_squared_error, num_obs = _psnr_update(preds, target, dim=dim) return _psnr_compute(sum_squared_error, num_obs, data_range, base=base, reduction=reduction) # type: ignore[arg-type]