# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional import torch from torch import Tensor from typing_extensions import Literal from torchmetrics.functional.classification.confusion_matrix import ( _binary_confusion_matrix_arg_validation, _binary_confusion_matrix_format, _binary_confusion_matrix_tensor_validation, _binary_confusion_matrix_update, _multiclass_confusion_matrix_arg_validation, _multiclass_confusion_matrix_format, _multiclass_confusion_matrix_tensor_validation, _multiclass_confusion_matrix_update, _multilabel_confusion_matrix_arg_validation, _multilabel_confusion_matrix_format, _multilabel_confusion_matrix_tensor_validation, _multilabel_confusion_matrix_update, ) from torchmetrics.utilities.compute import _safe_divide from torchmetrics.utilities.enums import ClassificationTask def _jaccard_index_reduce( confmat: Tensor, average: Optional[Literal["micro", "macro", "weighted", "none", "binary"]], ignore_index: Optional[int] = None, zero_division: float = 0.0, ) -> Tensor: """Perform reduction of an un-normalized confusion matrix into jaccard score. Args: confmat: tensor with un-normalized confusionmatrix average: reduction method - ``'binary'``: binary reduction, expects a 2x2 matrix - ``'macro'``: Calculate the metric for each class separately, and average the metrics across classes (with equal weights for each class). - ``'micro'``: Calculate the metric globally, across all samples and classes. - ``'weighted'``: Calculate the metric for each class separately, and average the metrics across classes, weighting each class by its support (``tp + fn``). - ``'none'`` or ``None``: Calculate the metric for each class separately, and return the metric for every class. ignore_index: Specifies a target value that is ignored and does not contribute to the metric calculation zero_division: Value to replace when there is a division by zero. Should be `0` or `1`. """ allowed_average = ["binary", "micro", "macro", "weighted", "none", None] if average not in allowed_average: raise ValueError(f"The `average` has to be one of {allowed_average}, got {average}.") confmat = confmat.float() if average == "binary": return _safe_divide(confmat[1, 1], (confmat[0, 1] + confmat[1, 0] + confmat[1, 1]), zero_division=zero_division) ignore_index_cond = ignore_index is not None and 0 <= ignore_index < confmat.shape[0] multilabel = confmat.ndim == 3 if multilabel: num = confmat[:, 1, 1] denom = confmat[:, 1, 1] + confmat[:, 0, 1] + confmat[:, 1, 0] else: # multiclass num = torch.diag(confmat) denom = confmat.sum(0) + confmat.sum(1) - num if average == "micro": num = num.sum() denom = denom.sum() - (denom[ignore_index] if ignore_index_cond else 0.0) jaccard = _safe_divide(num, denom, zero_division=zero_division) if average is None or average == "none" or average == "micro": return jaccard if average == "weighted": weights = confmat[:, 1, 1] + confmat[:, 1, 0] if confmat.ndim == 3 else confmat.sum(1) else: weights = torch.ones_like(jaccard) if ignore_index_cond: weights[ignore_index] = 0.0 if not multilabel: weights[confmat.sum(1) + confmat.sum(0) == 0] = 0.0 return ((weights * jaccard) / weights.sum()).sum() def binary_jaccard_index( preds: Tensor, target: Tensor, threshold: float = 0.5, ignore_index: Optional[int] = None, validate_args: bool = True, zero_division: float = 0.0, ) -> Tensor: r"""Calculate the Jaccard index for binary tasks. The `Jaccard index`_ (also known as the intersection over union or jaccard similarity coefficient) is an statistic that can be used to determine the similarity and diversity of a sample set. It is defined as the size of the intersection divided by the union of the sample sets: .. math:: J(A,B) = \frac{|A\cap B|}{|A\cup B|} Accepts the following input tensors: - ``preds`` (int or float tensor): ``(N, ...)``. If preds is a floating point tensor with values outside [0,1] range we consider the input to be logits and will auto apply sigmoid per element. Additionally, we convert to int tensor with thresholding using the value in ``threshold``. - ``target`` (int tensor): ``(N, ...)`` Additional dimension ``...`` will be flattened into the batch dimension. Args: preds: Tensor with predictions target: Tensor with true labels threshold: Threshold for transforming probability to binary (0,1) predictions ignore_index: Specifies a target value that is ignored and does not contribute to the metric calculation validate_args: bool indicating if input arguments and tensors should be validated for correctness. Set to ``False`` for faster computations. zero_division: Value to replace when there is a division by zero. Should be `0` or `1`. Example (preds is int tensor): >>> from torch import tensor >>> from torchmetrics.functional.classification import binary_jaccard_index >>> target = tensor([1, 1, 0, 0]) >>> preds = tensor([0, 1, 0, 0]) >>> binary_jaccard_index(preds, target) tensor(0.5000) Example (preds is float tensor): >>> from torchmetrics.functional.classification import binary_jaccard_index >>> target = tensor([1, 1, 0, 0]) >>> preds = tensor([0.35, 0.85, 0.48, 0.01]) >>> binary_jaccard_index(preds, target) tensor(0.5000) """ if validate_args: _binary_confusion_matrix_arg_validation(threshold, ignore_index) _binary_confusion_matrix_tensor_validation(preds, target, ignore_index) preds, target = _binary_confusion_matrix_format(preds, target, threshold, ignore_index) confmat = _binary_confusion_matrix_update(preds, target) return _jaccard_index_reduce(confmat, average="binary", zero_division=zero_division) def _multiclass_jaccard_index_arg_validation( num_classes: int, ignore_index: Optional[int] = None, average: Optional[Literal["micro", "macro", "weighted", "none"]] = None, ) -> None: _multiclass_confusion_matrix_arg_validation(num_classes, ignore_index) allowed_average = ("micro", "macro", "weighted", "none", None) if average not in allowed_average: raise ValueError(f"Expected argument `average` to be one of {allowed_average}, but got {average}.") def multiclass_jaccard_index( preds: Tensor, target: Tensor, num_classes: int, average: Optional[Literal["micro", "macro", "weighted", "none"]] = "macro", ignore_index: Optional[int] = None, validate_args: bool = True, zero_division: float = 0.0, ) -> Tensor: r"""Calculate the Jaccard index for multiclass tasks. The `Jaccard index`_ (also known as the intersection over union or jaccard similarity coefficient) is an statistic that can be used to determine the similarity and diversity of a sample set. It is defined as the size of the intersection divided by the union of the sample sets: .. math:: J(A,B) = \frac{|A\cap B|}{|A\cup B|} Accepts the following input tensors: - ``preds``: ``(N, ...)`` (int tensor) or ``(N, C, ..)`` (float tensor). If preds is a floating point we apply ``torch.argmax`` along the ``C`` dimension to automatically convert probabilities/logits into an int tensor. - ``target`` (int tensor): ``(N, ...)`` Additional dimension ``...`` will be flattened into the batch dimension. Args: preds: Tensor with predictions target: Tensor with true labels num_classes: Integer specifying the number of classes average: Defines the reduction that is applied over labels. Should be one of the following: - ``micro``: Sum statistics over all labels - ``macro``: Calculate statistics for each label and average them - ``weighted``: calculates statistics for each label and computes weighted average using their support - ``"none"`` or ``None``: calculates statistic for each label and applies no reduction ignore_index: Specifies a target value that is ignored and does not contribute to the metric calculation validate_args: bool indicating if input arguments and tensors should be validated for correctness. Set to ``False`` for faster computations. zero_division: Value to replace when there is a division by zero. Should be `0` or `1`. Example (pred is integer tensor): >>> from torch import tensor >>> from torchmetrics.functional.classification import multiclass_jaccard_index >>> target = tensor([2, 1, 0, 0]) >>> preds = tensor([2, 1, 0, 1]) >>> multiclass_jaccard_index(preds, target, num_classes=3) tensor(0.6667) Example (pred is float tensor): >>> from torchmetrics.functional.classification import multiclass_jaccard_index >>> target = tensor([2, 1, 0, 0]) >>> preds = tensor([[0.16, 0.26, 0.58], ... [0.22, 0.61, 0.17], ... [0.71, 0.09, 0.20], ... [0.05, 0.82, 0.13]]) >>> multiclass_jaccard_index(preds, target, num_classes=3) tensor(0.6667) """ if validate_args: _multiclass_jaccard_index_arg_validation(num_classes, ignore_index, average) _multiclass_confusion_matrix_tensor_validation(preds, target, num_classes, ignore_index) preds, target = _multiclass_confusion_matrix_format(preds, target, ignore_index) confmat = _multiclass_confusion_matrix_update(preds, target, num_classes) return _jaccard_index_reduce(confmat, average=average, ignore_index=ignore_index, zero_division=zero_division) def _multilabel_jaccard_index_arg_validation( num_labels: int, threshold: float = 0.5, ignore_index: Optional[int] = None, average: Optional[Literal["micro", "macro", "weighted", "none"]] = "macro", ) -> None: _multilabel_confusion_matrix_arg_validation(num_labels, threshold, ignore_index) allowed_average = ("micro", "macro", "weighted", "none", None) if average not in allowed_average: raise ValueError(f"Expected argument `average` to be one of {allowed_average}, but got {average}.") def multilabel_jaccard_index( preds: Tensor, target: Tensor, num_labels: int, threshold: float = 0.5, average: Optional[Literal["micro", "macro", "weighted", "none"]] = "macro", ignore_index: Optional[int] = None, validate_args: bool = True, zero_division: float = 0.0, ) -> Tensor: r"""Calculate the Jaccard index for multilabel tasks. The `Jaccard index`_ (also known as the intersection over union or jaccard similarity coefficient) is an statistic that can be used to determine the similarity and diversity of a sample set. It is defined as the size of the intersection divided by the union of the sample sets: .. math:: J(A,B) = \frac{|A\cap B|}{|A\cup B|} Accepts the following input tensors: - ``preds`` (int or float tensor): ``(N, C, ...)``. If preds is a floating point tensor with values outside [0,1] range we consider the input to be logits and will auto apply sigmoid per element. Additionally, we convert to int tensor with thresholding using the value in ``threshold``. - ``target`` (int tensor): ``(N, C, ...)`` Additional dimension ``...`` will be flattened into the batch dimension. Args: preds: Tensor with predictions target: Tensor with true labels num_labels: Integer specifying the number of labels threshold: Threshold for transforming probability to binary (0,1) predictions average: Defines the reduction that is applied over labels. Should be one of the following: - ``micro``: Sum statistics over all labels - ``macro``: Calculate statistics for each label and average them - ``weighted``: calculates statistics for each label and computes weighted average using their support - ``"none"`` or ``None``: calculates statistic for each label and applies no reduction ignore_index: Specifies a target value that is ignored and does not contribute to the metric calculation validate_args: bool indicating if input arguments and tensors should be validated for correctness. Set to ``False`` for faster computations. zero_division: Value to replace when there is a division by zero. Should be `0` or `1`. Example (preds is int tensor): >>> from torch import tensor >>> from torchmetrics.functional.classification import multilabel_jaccard_index >>> target = tensor([[0, 1, 0], [1, 0, 1]]) >>> preds = tensor([[0, 0, 1], [1, 0, 1]]) >>> multilabel_jaccard_index(preds, target, num_labels=3) tensor(0.5000) Example (preds is float tensor): >>> from torchmetrics.functional.classification import multilabel_jaccard_index >>> target = tensor([[0, 1, 0], [1, 0, 1]]) >>> preds = tensor([[0.11, 0.22, 0.84], [0.73, 0.33, 0.92]]) >>> multilabel_jaccard_index(preds, target, num_labels=3) tensor(0.5000) """ if validate_args: _multilabel_jaccard_index_arg_validation(num_labels, threshold, ignore_index) _multilabel_confusion_matrix_tensor_validation(preds, target, num_labels, ignore_index) preds, target = _multilabel_confusion_matrix_format(preds, target, num_labels, threshold, ignore_index) confmat = _multilabel_confusion_matrix_update(preds, target, num_labels) return _jaccard_index_reduce(confmat, average=average, ignore_index=ignore_index, zero_division=zero_division) def jaccard_index( preds: Tensor, target: Tensor, task: Literal["binary", "multiclass", "multilabel"], threshold: float = 0.5, num_classes: Optional[int] = None, num_labels: Optional[int] = None, average: Optional[Literal["micro", "macro", "weighted", "none"]] = "macro", ignore_index: Optional[int] = None, validate_args: bool = True, zero_division: float = 0.0, ) -> Tensor: r"""Calculate the Jaccard index. The `Jaccard index`_ (also known as the intersection over union or jaccard similarity coefficient) is an statistic that can be used to determine the similarity and diversity of a sample set. It is defined as the size of the intersection divided by the union of the sample sets: .. math:: J(A,B) = \frac{|A\cap B|}{|A\cup B|} This function is a simple wrapper to get the task specific versions of this metric, which is done by setting the ``task`` argument to either ``'binary'``, ``'multiclass'`` or ``multilabel``. See the documentation of :func:`~torchmetrics.functional.classification.binary_jaccard_index`, :func:`~torchmetrics.functional.classification.multiclass_jaccard_index` and :func:`~torchmetrics.functional.classification.multilabel_jaccard_index` for the specific details of each argument influence and examples. Legacy Example: >>> from torch import randint, tensor >>> target = randint(0, 2, (10, 25, 25)) >>> pred = tensor(target) >>> pred[2:5, 7:13, 9:15] = 1 - pred[2:5, 7:13, 9:15] >>> jaccard_index(pred, target, task="multiclass", num_classes=2) tensor(0.9660) """ task = ClassificationTask.from_str(task) if task == ClassificationTask.BINARY: return binary_jaccard_index(preds, target, threshold, ignore_index, validate_args, zero_division) if task == ClassificationTask.MULTICLASS: if not isinstance(num_classes, int): raise ValueError(f"`num_classes` is expected to be `int` but `{type(num_classes)} was passed.`") return multiclass_jaccard_index(preds, target, num_classes, average, ignore_index, validate_args, zero_division) if task == ClassificationTask.MULTILABEL: if not isinstance(num_labels, int): raise ValueError(f"`num_labels` is expected to be `int` but `{type(num_labels)} was passed.`") return multilabel_jaccard_index( preds, target, num_labels, threshold, average, ignore_index, validate_args, zero_division ) raise ValueError(f"Not handled value: {task}")