# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from functools import lru_cache from typing import Any, Optional import numpy as np import torch from torch import Tensor from torchmetrics.utilities import rank_zero_info, rank_zero_warn from torchmetrics.utilities.imports import _LIBROSA_AVAILABLE, _ONNXRUNTIME_AVAILABLE, _REQUESTS_AVAILABLE if _LIBROSA_AVAILABLE and _ONNXRUNTIME_AVAILABLE and _REQUESTS_AVAILABLE: import librosa import onnxruntime as ort import requests from onnxruntime import InferenceSession else: librosa, ort, requests = None, None, None # type:ignore class InferenceSession: # type:ignore """Dummy InferenceSession.""" def __init__(self, **kwargs: dict[str, Any]) -> None: ... __doctest_requires__ = { ("deep_noise_suppression_mean_opinion_score", "_load_session"): ["requests", "librosa", "onnxruntime"] } SAMPLING_RATE = 16000 INPUT_LENGTH = 9.01 DNSMOS_DIR = "~/.torchmetrics/DNSMOS" def _prepare_dnsmos(dnsmos_dir: str) -> None: """Download required DNSMOS files. Args: dnsmos_dir: a dir to save the downloaded files. Defaults to "~/.torchmetrics". """ # https://raw.githubusercontent.com/microsoft/DNS-Challenge/master/DNSMOS/DNSMOS/model_v8.onnx # https://raw.githubusercontent.com/microsoft/DNS-Challenge/master/DNSMOS/DNSMOS/sig_bak_ovr.onnx # https://raw.githubusercontent.com/microsoft/DNS-Challenge/master/DNSMOS/pDNSMOS/sig_bak_ovr.onnx url = "https://raw.githubusercontent.com/microsoft/DNS-Challenge/master" dnsmos_dir = os.path.expanduser(dnsmos_dir) # save to or load from ~/torchmetrics/dnsmos/. for file in ["DNSMOS/DNSMOS/model_v8.onnx", "DNSMOS/DNSMOS/sig_bak_ovr.onnx", "DNSMOS/pDNSMOS/sig_bak_ovr.onnx"]: saveto = os.path.join(dnsmos_dir, file[7:]) os.makedirs(os.path.dirname(saveto), exist_ok=True) if os.path.exists(saveto): # try loading onnx try: _ = InferenceSession(saveto) continue # skip downloading if succeeded except Exception as _: os.remove(saveto) urlf = f"{url}/{file}" rank_zero_info(f"downloading {urlf} to {saveto}") myfile = requests.get(urlf) with open(saveto, "wb") as f: f.write(myfile.content) def _load_session( path: str, device: torch.device, num_threads: Optional[int] = None, ) -> InferenceSession: """Load onnxruntime session. Args: path: the model path device: the device used num_threads: the number of threads to use. Defaults to None. Returns: onnxruntime session """ path = os.path.expanduser(path) if not os.path.exists(path): _prepare_dnsmos(DNSMOS_DIR) opts = ort.SessionOptions() if num_threads is not None: opts.inter_op_num_threads = num_threads opts.intra_op_num_threads = num_threads if device.type == "cpu": infs = InferenceSession(path, providers=["CPUExecutionProvider"], sess_options=opts) elif "CUDAExecutionProvider" in ort.get_available_providers(): # win or linux with cuda providers = ["CUDAExecutionProvider", "CPUExecutionProvider"] provider_options = [{"device_id": device.index}, {}] infs = InferenceSession(path, providers=providers, provider_options=provider_options, sess_options=opts) elif "CoreMLExecutionProvider" in ort.get_available_providers(): # macos with coreml providers = ["CoreMLExecutionProvider", "CPUExecutionProvider"] provider_options = [{"device_id": device.index}, {}] infs = InferenceSession(path, providers=providers, provider_options=provider_options, sess_options=opts) else: infs = InferenceSession(path, providers=["CPUExecutionProvider"], sess_options=opts) return infs _cached_load_session = lru_cache()(_load_session) def _audio_melspec( audio: np.ndarray, n_mels: int = 120, frame_size: int = 320, hop_length: int = 160, sr: int = 16000, to_db: bool = True, ) -> np.ndarray: """Calculate the mel-spectrogram of an audio. Args: audio: [..., T] n_mels: the number of mel-frequencies frame_size: stft length hop_length: stft hop length sr: sample rate of audio to_db: convert to dB scale if `True` is given Returns: mel-spectrogram: [..., num_mel, T'] """ shape = audio.shape audio = audio.reshape(-1, shape[-1]) mel_spec = librosa.feature.melspectrogram( y=audio, sr=sr, n_fft=frame_size + 1, hop_length=hop_length, n_mels=n_mels ) mel_spec = mel_spec.transpose(0, 2, 1) mel_spec = mel_spec.reshape(shape[:-1] + mel_spec.shape[1:]) if to_db: for b in range(mel_spec.shape[0]): mel_spec[b, ...] = (librosa.power_to_db(mel_spec[b], ref=np.max) + 40) / 40 return mel_spec def _polyfit_val(mos: np.ndarray, personalized: bool) -> np.ndarray: """Use polyfit to convert raw mos values to DNSMOS values. Args: mos: the raw mos values, [..., 4] personalized: whether interfering speaker is penalized Returns: DNSMOS: [..., 4] """ if personalized: p_ovr = np.poly1d([-0.00533021, 0.005101, 1.18058466, -0.11236046]) p_sig = np.poly1d([-0.01019296, 0.02751166, 1.19576786, -0.24348726]) p_bak = np.poly1d([-0.04976499, 0.44276479, -0.1644611, 0.96883132]) else: p_ovr = np.poly1d([-0.06766283, 1.11546468, 0.04602535]) p_sig = np.poly1d([-0.08397278, 1.22083953, 0.0052439]) # x**2*v0 + x**1*v1+ v2 p_bak = np.poly1d([-0.13166888, 1.60915514, -0.39604546]) mos[..., 1] = p_sig(mos[..., 1]) mos[..., 2] = p_bak(mos[..., 2]) mos[..., 3] = p_ovr(mos[..., 3]) return mos def deep_noise_suppression_mean_opinion_score( preds: Tensor, fs: int, personalized: bool, device: Optional[str] = None, num_threads: Optional[int] = None, cache_session: bool = True, ) -> Tensor: """Calculate `Deep Noise Suppression performance evaluation based on Mean Opinion Score`_ (DNSMOS). Human subjective evaluation is the ”gold standard” to evaluate speech quality optimized for human perception. Perceptual objective metrics serve as a proxy for subjective scores. The conventional and widely used metrics require a reference clean speech signal, which is unavailable in real recordings. The no-reference approaches correlate poorly with human ratings and are not widely adopted in the research community. One of the biggest use cases of these perceptual objective metrics is to evaluate noise suppression algorithms. DNSMOS generalizes well in challenging test conditions with a high correlation to human ratings in stack ranking noise suppression methods. More details can be found in `DNSMOS paper `_ and `DNSMOS P.835 paper `_. .. hint:: Using this metric requires you to have ``librosa``, ``onnxruntime`` and ``requests`` installed. Install as ``pip install torchmetrics['audio']`` or alternatively ``pip install librosa onnxruntime-gpu requests`` (if you do not have GPU enabled machine install ``onnxruntime`` instead of ``onnxruntime-gpu``) Args: preds: [..., time] fs: sampling frequency personalized: whether interfering speaker is penalized device: the device used for calculating DNSMOS, can be cpu or cuda:n, where n is the index of gpu. If None is given, then the device of input is used. num_threads: the number of threads to use for cpu inference. Defaults to None. cache_session: whether to cache the onnx session. By default this is true, meaning that repeated calls to this method is faster than if this was set to False, the consequence is that the session will be cached in memory until the process is terminated. Returns: Float tensor with shape ``(...,4)`` of DNSMOS values per sample, i.e. [p808_mos, mos_sig, mos_bak, mos_ovr] Raises: ModuleNotFoundError: If ``librosa``, ``onnxruntime`` or ``requests`` packages are not installed Example: >>> from torch import randn >>> from torchmetrics.functional.audio.dnsmos import deep_noise_suppression_mean_opinion_score >>> preds = randn(8000) >>> deep_noise_suppression_mean_opinion_score(preds, 8000, False) tensor([2.2..., 2.0..., 1.1..., 1.2...], dtype=torch.float64) """ if not _LIBROSA_AVAILABLE or not _ONNXRUNTIME_AVAILABLE or not _REQUESTS_AVAILABLE: raise ModuleNotFoundError( "DNSMOS metric requires that librosa, onnxruntime and requests are installed." " Install as `pip install librosa onnxruntime-gpu requests`." ) device = torch.device(device) if device is not None else preds.device _load_session_function = _cached_load_session if cache_session else _load_session onnx_sess = _load_session_function( f"{DNSMOS_DIR}/{'p' if personalized else ''}DNSMOS/sig_bak_ovr.onnx", device, num_threads ) p808_onnx_sess = _load_session_function(f"{DNSMOS_DIR}/DNSMOS/model_v8.onnx", device, num_threads) desired_fs = SAMPLING_RATE if fs != desired_fs: audio = librosa.resample(preds.cpu().numpy(), orig_sr=fs, target_sr=desired_fs) else: audio = preds.cpu().numpy() len_samples = int(INPUT_LENGTH * desired_fs) while audio.shape[-1] < len_samples: audio = np.concatenate([audio, audio], axis=-1) num_hops = int(np.floor(audio.shape[-1] / desired_fs) - INPUT_LENGTH) + 1 moss = [] hop_len_samples = desired_fs for idx in range(num_hops): audio_seg = audio[..., int(idx * hop_len_samples) : int((idx + INPUT_LENGTH) * hop_len_samples)] if audio_seg.shape[-1] < len_samples: continue shape = audio_seg.shape audio_seg = audio_seg.reshape((-1, shape[-1])) input_features = np.array(audio_seg).astype("float32") p808_input_features = np.array(_audio_melspec(audio=audio_seg[..., :-160])).astype("float32") if device.type != "cpu" and ( "CUDAExecutionProvider" in ort.get_available_providers() or "CoreMLExecutionProvider" in ort.get_available_providers() ): try: input_features = ort.OrtValue.ortvalue_from_numpy(input_features, device.type, device.index) p808_input_features = ort.OrtValue.ortvalue_from_numpy(p808_input_features, device.type, device.index) except Exception as e: rank_zero_warn(f"Failed to use GPU for DNSMOS, reverting to CPU. Error: {e}") oi = {"input_1": input_features} p808_oi = {"input_1": p808_input_features} mos_np = np.concatenate( [p808_onnx_sess.run(None, p808_oi)[0], onnx_sess.run(None, oi)[0]], axis=-1, dtype="float64" ) mos_np = _polyfit_val(mos_np, personalized) mos_np = mos_np.reshape(shape[:-1] + (4,)) moss.append(mos_np) return torch.from_numpy(np.mean(np.stack(moss, axis=-1), axis=-1)) # [p808_mos, mos_sig, mos_bak, mos_ovr]