# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections.abc import Sequence from typing import Any, Optional, Union from torch import Tensor from torchmetrics.detection.iou import IntersectionOverUnion from torchmetrics.functional.detection.giou import _giou_compute, _giou_update from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE, _TORCHVISION_AVAILABLE from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE if not _TORCHVISION_AVAILABLE: __doctest_skip__ = ["GeneralizedIntersectionOverUnion", "GeneralizedIntersectionOverUnion.plot"] elif not _MATPLOTLIB_AVAILABLE: __doctest_skip__ = ["GeneralizedIntersectionOverUnion.plot"] class GeneralizedIntersectionOverUnion(IntersectionOverUnion): r"""Compute Generalized Intersection Over Union (`GIoU`_). As input to ``forward`` and ``update`` the metric accepts the following input: - ``preds`` (:class:`~List`): A list consisting of dictionaries each containing the key-values (each dictionary corresponds to a single image). Parameters that should be provided per dict: - ``boxes`` (:class:`~torch.Tensor`): float tensor of shape ``(num_boxes, 4)`` containing ``num_boxes`` detection boxes of the format specified in the constructor. By default, this method expects ``(xmin, ymin, xmax, ymax)`` in absolute image coordinates. - ``labels`` (:class:`~torch.Tensor`): integer tensor of shape ``(num_boxes)`` containing 0-indexed detection classes for the boxes. - ``target`` (:class:`~List`): A list consisting of dictionaries each containing the key-values (each dictionary corresponds to a single image). Parameters that should be provided per dict: - ``boxes`` (:class:`~torch.Tensor`): float tensor of shape ``(num_boxes, 4)`` containing ``num_boxes`` ground truth boxes of the format specified in the constructor. By default, this method expects ``(xmin, ymin, xmax, ymax)`` in absolute image coordinates. - ``labels`` (:class:`~torch.Tensor`): integer tensor of shape ``(num_boxes)`` containing 0-indexed ground truth classes for the boxes. As output of ``forward`` and ``compute`` the metric returns the following output: - ``giou_dict``: A dictionary containing the following key-values: - giou: (:class:`~torch.Tensor`) with overall giou value over all classes and samples. - giou/cl_{cl}: (:class:`~torch.Tensor`), if argument ``class metrics=True`` Args: box_format: Input format of given boxes. Supported formats are ``[`xyxy`, `xywh`, `cxcywh`]``. iou_thresholds: Optional IoU thresholds for evaluation. If set to `None` the threshold is ignored. class_metrics: Option to enable per-class metrics for IoU. Has a performance impact. respect_labels: Ignore values from boxes that do not have the same label as the ground truth box. Else will compute Iou between all pairs of boxes. kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info. Example: >>> import torch >>> from torchmetrics.detection import GeneralizedIntersectionOverUnion >>> preds = [ ... { ... "boxes": torch.tensor([[296.55, 93.96, 314.97, 152.79], [298.55, 98.96, 314.97, 151.79]]), ... "scores": torch.tensor([0.236, 0.56]), ... "labels": torch.tensor([4, 5]), ... } ... ] >>> target = [ ... { ... "boxes": torch.tensor([[300.00, 100.00, 315.00, 150.00]]), ... "labels": torch.tensor([5]), ... } ... ] >>> metric = GeneralizedIntersectionOverUnion() >>> metric(preds, target) {'giou': tensor(0.8613)} Raises: ModuleNotFoundError: If torchvision is not installed with version 0.8.0 or newer. """ is_differentiable: bool = False higher_is_better: Optional[bool] = True full_state_update: bool = True _iou_type: str = "giou" _invalid_val: float = -1.0 def __init__( self, box_format: str = "xyxy", iou_threshold: Optional[float] = None, class_metrics: bool = False, respect_labels: bool = True, **kwargs: Any, ) -> None: super().__init__(box_format, iou_threshold, class_metrics, respect_labels, **kwargs) @staticmethod def _iou_update_fn(*args: Any, **kwargs: Any) -> Tensor: return _giou_update(*args, **kwargs) @staticmethod def _iou_compute_fn(*args: Any, **kwargs: Any) -> Tensor: return _giou_compute(*args, **kwargs) def plot( self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None ) -> _PLOT_OUT_TYPE: """Plot a single or multiple values from the metric. Args: val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. If no value is provided, will automatically call `metric.compute` and plot that result. ax: An matplotlib axis object. If provided will add plot to that axis Returns: Figure object and Axes object Raises: ModuleNotFoundError: If `matplotlib` is not installed .. plot:: :scale: 75 >>> # Example plotting single value >>> import torch >>> from torchmetrics.detection import GeneralizedIntersectionOverUnion >>> preds = [ ... { ... "boxes": torch.tensor([[296.55, 93.96, 314.97, 152.79], [298.55, 98.96, 314.97, 151.79]]), ... "scores": torch.tensor([0.236, 0.56]), ... "labels": torch.tensor([4, 5]), ... } ... ] >>> target = [ ... { ... "boxes": torch.tensor([[300.00, 100.00, 315.00, 150.00]]), ... "labels": torch.tensor([5]), ... } ... ] >>> metric = GeneralizedIntersectionOverUnion() >>> metric.update(preds, target) >>> fig_, ax_ = metric.plot() .. plot:: :scale: 75 >>> # Example plotting multiple values >>> import torch >>> from torchmetrics.detection import GeneralizedIntersectionOverUnion >>> preds = [ ... { ... "boxes": torch.tensor([[296.55, 93.96, 314.97, 152.79], [298.55, 98.96, 314.97, 151.79]]), ... "scores": torch.tensor([0.236, 0.56]), ... "labels": torch.tensor([4, 5]), ... } ... ] >>> target = lambda : [ ... { ... "boxes": torch.tensor([[300.00, 100.00, 335.00, 150.00]]) + torch.randint(-10, 10, (1, 4)), ... "labels": torch.tensor([5]), ... } ... ] >>> metric = GeneralizedIntersectionOverUnion() >>> vals = [] >>> for _ in range(20): ... vals.append(metric(preds, target())) >>> fig_, ax_ = metric.plot(vals) """ return self._plot(val, ax)