# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections.abc import Sequence from typing import Any, Optional, Union from torch import Tensor from typing_extensions import Literal from torchmetrics.classification.base import _ClassificationTaskWrapper from torchmetrics.classification.confusion_matrix import BinaryConfusionMatrix, MulticlassConfusionMatrix from torchmetrics.functional.classification.cohen_kappa import ( _binary_cohen_kappa_arg_validation, _cohen_kappa_reduce, _multiclass_cohen_kappa_arg_validation, ) from torchmetrics.metric import Metric from torchmetrics.utilities.enums import ClassificationTaskNoMultilabel from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE if not _MATPLOTLIB_AVAILABLE: __doctest_skip__ = ["BinaryCohenKappa.plot", "MulticlassCohenKappa.plot"] class BinaryCohenKappa(BinaryConfusionMatrix): r"""Calculate `Cohen's kappa score`_ that measures inter-annotator agreement for binary tasks. .. math:: \kappa = (p_o - p_e) / (1 - p_e) where :math:`p_o` is the empirical probability of agreement and :math:`p_e` is the expected agreement when both annotators assign labels randomly. Note that :math:`p_e` is estimated using a per-annotator empirical prior over the class labels. As input to ``forward`` and ``update`` the metric accepts the following input: - ``preds`` (:class:`~torch.Tensor`): A int or float tensor of shape ``(N, ...)``. If preds is a floating point tensor with values outside [0,1] range we consider the input to be logits and will auto apply sigmoid per element. Additionally, we convert to int tensor with thresholding using the value in ``threshold``. - ``target`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, ...)``. .. tip:: Additional dimension ``...`` will be flattened into the batch dimension. As output to ``forward`` and ``compute`` the metric returns the following output: - ``bc_kappa`` (:class:`~torch.Tensor`): A tensor containing cohen kappa score Args: threshold: Threshold for transforming probability to binary (0,1) predictions ignore_index: Specifies a target value that is ignored and does not contribute to the metric calculation weights: Weighting type to calculate the score. Choose from: - ``None`` or ``'none'``: no weighting - ``'linear'``: linear weighting - ``'quadratic'``: quadratic weighting validate_args: bool indicating if input arguments and tensors should be validated for correctness. Set to ``False`` for faster computations. kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info. Example (preds is int tensor): >>> from torch import tensor >>> from torchmetrics.classification import BinaryCohenKappa >>> target = tensor([1, 1, 0, 0]) >>> preds = tensor([0, 1, 0, 0]) >>> metric = BinaryCohenKappa() >>> metric(preds, target) tensor(0.5000) Example (preds is float tensor): >>> from torchmetrics.classification import BinaryCohenKappa >>> target = tensor([1, 1, 0, 0]) >>> preds = tensor([0.35, 0.85, 0.48, 0.01]) >>> metric = BinaryCohenKappa() >>> metric(preds, target) tensor(0.5000) """ is_differentiable: bool = False higher_is_better: bool = True full_state_update: bool = False plot_lower_bound: float = 0.0 plot_upper_bound: float = 1.0 def __init__( self, threshold: float = 0.5, ignore_index: Optional[int] = None, weights: Optional[Literal["linear", "quadratic", "none"]] = None, validate_args: bool = True, **kwargs: Any, ) -> None: super().__init__(threshold, ignore_index, normalize=None, validate_args=False, **kwargs) if validate_args: _binary_cohen_kappa_arg_validation(threshold, ignore_index, weights) self.weights = weights self.validate_args = validate_args def compute(self) -> Tensor: """Compute metric.""" return _cohen_kappa_reduce(self.confmat, self.weights) def plot( # type: ignore[override] self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None ) -> _PLOT_OUT_TYPE: """Plot a single or multiple values from the metric. Args: val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. If no value is provided, will automatically call `metric.compute` and plot that result. ax: An matplotlib axis object. If provided will add plot to that axis Returns: Figure object and Axes object Raises: ModuleNotFoundError: If `matplotlib` is not installed .. plot:: :scale: 75 >>> from torch import rand, randint >>> # Example plotting a single value >>> from torchmetrics.classification import BinaryCohenKappa >>> metric = BinaryCohenKappa() >>> metric.update(rand(10), randint(2,(10,))) >>> fig_, ax_ = metric.plot() .. plot:: :scale: 75 >>> from torch import rand, randint >>> # Example plotting multiple values >>> from torchmetrics.classification import BinaryCohenKappa >>> metric = BinaryCohenKappa() >>> values = [ ] >>> for _ in range(10): ... values.append(metric(rand(10), randint(2,(10,)))) >>> fig_, ax_ = metric.plot(values) """ return self._plot(val, ax) class MulticlassCohenKappa(MulticlassConfusionMatrix): r"""Calculate `Cohen's kappa score`_ that measures inter-annotator agreement for multiclass tasks. .. math:: \kappa = (p_o - p_e) / (1 - p_e) where :math:`p_o` is the empirical probability of agreement and :math:`p_e` is the expected agreement when both annotators assign labels randomly. Note that :math:`p_e` is estimated using a per-annotator empirical prior over the class labels. As input to ``forward`` and ``update`` the metric accepts the following input: - ``preds`` (:class:`~torch.Tensor`): Either an int tensor of shape ``(N, ...)` or float tensor of shape ``(N, C, ..)``. If preds is a floating point we apply ``torch.argmax`` along the ``C`` dimension to automatically convert probabilities/logits into an int tensor. - ``target`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, ...)``. .. tip:: Additional dimension ``...`` will be flattened into the batch dimension. As output to ``forward`` and ``compute`` the metric returns the following output: - ``mcck`` (:class:`~torch.Tensor`): A tensor containing cohen kappa score Args: num_classes: Integer specifying the number of classes ignore_index: Specifies a target value that is ignored and does not contribute to the metric calculation weights: Weighting type to calculate the score. Choose from: - ``None`` or ``'none'``: no weighting - ``'linear'``: linear weighting - ``'quadratic'``: quadratic weighting validate_args: bool indicating if input arguments and tensors should be validated for correctness. Set to ``False`` for faster computations. kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info. Example (pred is integer tensor): >>> from torch import tensor >>> from torchmetrics.classification import MulticlassCohenKappa >>> target = tensor([2, 1, 0, 0]) >>> preds = tensor([2, 1, 0, 1]) >>> metric = MulticlassCohenKappa(num_classes=3) >>> metric(preds, target) tensor(0.6364) Example (pred is float tensor): >>> from torchmetrics.classification import MulticlassCohenKappa >>> target = tensor([2, 1, 0, 0]) >>> preds = tensor([[0.16, 0.26, 0.58], ... [0.22, 0.61, 0.17], ... [0.71, 0.09, 0.20], ... [0.05, 0.82, 0.13]]) >>> metric = MulticlassCohenKappa(num_classes=3) >>> metric(preds, target) tensor(0.6364) """ is_differentiable: bool = False higher_is_better: bool = True full_state_update: bool = False plot_lower_bound: float = 0.0 plot_upper_bound: float = 1.0 plot_legend_name: str = "Class" def __init__( self, num_classes: int, ignore_index: Optional[int] = None, weights: Optional[Literal["linear", "quadratic", "none"]] = None, validate_args: bool = True, **kwargs: Any, ) -> None: super().__init__(num_classes, ignore_index, normalize=None, validate_args=False, **kwargs) if validate_args: _multiclass_cohen_kappa_arg_validation(num_classes, ignore_index, weights) self.weights = weights self.validate_args = validate_args def compute(self) -> Tensor: """Compute metric.""" return _cohen_kappa_reduce(self.confmat, self.weights) def plot( # type: ignore[override] self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None ) -> _PLOT_OUT_TYPE: """Plot a single or multiple values from the metric. Args: val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. If no value is provided, will automatically call `metric.compute` and plot that result. ax: An matplotlib axis object. If provided will add plot to that axis Returns: Figure object and Axes object Raises: ModuleNotFoundError: If `matplotlib` is not installed .. plot:: :scale: 75 >>> from torch import randn, randint >>> # Example plotting a single value >>> from torchmetrics.classification import MulticlassCohenKappa >>> metric = MulticlassCohenKappa(num_classes=3) >>> metric.update(randn(20,3).softmax(dim=-1), randint(3, (20,))) >>> fig_, ax_ = metric.plot() .. plot:: :scale: 75 >>> from torch import randn, randint >>> # Example plotting a multiple values >>> from torchmetrics.classification import MulticlassCohenKappa >>> metric = MulticlassCohenKappa(num_classes=3) >>> values = [] >>> for _ in range(20): ... values.append(metric(randn(20,3).softmax(dim=-1), randint(3, (20,)))) >>> fig_, ax_ = metric.plot(values) """ return self._plot(val, ax) class CohenKappa(_ClassificationTaskWrapper): r"""Calculate `Cohen's kappa score`_ that measures inter-annotator agreement. .. math:: \kappa = (p_o - p_e) / (1 - p_e) where :math:`p_o` is the empirical probability of agreement and :math:`p_e` is the expected agreement when both annotators assign labels randomly. Note that :math:`p_e` is estimated using a per-annotator empirical prior over the class labels. This function is a simple wrapper to get the task specific versions of this metric, which is done by setting the ``task`` argument to either ``'binary'`` or ``'multiclass'``. See the documentation of :class:`~torchmetrics.classification.BinaryCohenKappa` and :class:`~torchmetrics.classification.MulticlassCohenKappa` for the specific details of each argument influence and examples. Legacy Example: >>> from torch import tensor >>> target = tensor([1, 1, 0, 0]) >>> preds = tensor([0, 1, 0, 0]) >>> cohenkappa = CohenKappa(task="multiclass", num_classes=2) >>> cohenkappa(preds, target) tensor(0.5000) """ def __new__( # type: ignore[misc] cls: type["CohenKappa"], task: Literal["binary", "multiclass"], threshold: float = 0.5, num_classes: Optional[int] = None, weights: Optional[Literal["linear", "quadratic", "none"]] = None, ignore_index: Optional[int] = None, validate_args: bool = True, **kwargs: Any, ) -> Metric: """Initialize task metric.""" task = ClassificationTaskNoMultilabel.from_str(task) kwargs.update({"weights": weights, "ignore_index": ignore_index, "validate_args": validate_args}) if task == ClassificationTaskNoMultilabel.BINARY: return BinaryCohenKappa(threshold, **kwargs) if task == ClassificationTaskNoMultilabel.MULTICLASS: if not isinstance(num_classes, int): raise ValueError(f"`num_classes` is expected to be `int` but `{type(num_classes)} was passed.`") return MulticlassCohenKappa(num_classes, **kwargs) raise ValueError(f"Task {task} not supported!")