"""Logic for applying operators to states. Todo: * Sometimes the final result needs to be expanded, we should do this by hand. """ from sympy.concrete import Sum from sympy.core.add import Add from sympy.core.kind import NumberKind from sympy.core.mul import Mul from sympy.core.power import Pow from sympy.core.singleton import S from sympy.core.sympify import sympify, _sympify from sympy.physics.quantum.anticommutator import AntiCommutator from sympy.physics.quantum.commutator import Commutator from sympy.physics.quantum.dagger import Dagger from sympy.physics.quantum.innerproduct import InnerProduct from sympy.physics.quantum.operator import OuterProduct, Operator from sympy.physics.quantum.state import State, KetBase, BraBase, Wavefunction from sympy.physics.quantum.tensorproduct import TensorProduct __all__ = [ 'qapply' ] #----------------------------------------------------------------------------- # Main code #----------------------------------------------------------------------------- def ip_doit_func(e): """Transform the inner products in an expression by calling ``.doit()``.""" return e.replace(InnerProduct, lambda *args: InnerProduct(*args).doit()) def sum_doit_func(e): """Transform the sums in an expression by calling ``.doit()``.""" return e.replace(Sum, lambda *args: Sum(*args).doit()) def qapply(e, **options): """Apply operators to states in a quantum expression. Parameters ========== e : Expr The expression containing operators and states. This expression tree will be walked to find operators acting on states symbolically. options : dict A dict of key/value pairs that determine how the operator actions are carried out. The following options are valid: * ``dagger``: try to apply Dagger operators to the left (default: False). * ``ip_doit``: call ``.doit()`` in inner products when they are encountered (default: True). * ``sum_doit``: call ``.doit()`` on sums when they are encountered (default: False). This is helpful for collapsing sums over Kronecker delta's that are created when calling ``qapply``. Returns ======= e : Expr The original expression, but with the operators applied to states. Examples ======== >>> from sympy.physics.quantum import qapply, Ket, Bra >>> b = Bra('b') >>> k = Ket('k') >>> A = k * b >>> A |k>>> qapply(A * b.dual / (b * b.dual)) |k> >>> qapply(k.dual * A / (k.dual * k)) and A*(|a>+|b>) and all Commutators and # TensorProducts. The only problem with this is that if we can't apply # all the Operators, we have just expanded everything. # TODO: don't expand the scalars in front of each Mul. e = e.expand(commutator=True, tensorproduct=True) # If we just have a raw ket, return it. if isinstance(e, KetBase): return e # We have an Add(a, b, c, ...) and compute # Add(qapply(a), qapply(b), ...) elif isinstance(e, Add): result = 0 for arg in e.args: result += qapply(arg, **options) return result.expand() # For a Density operator call qapply on its state elif isinstance(e, Density): new_args = [(qapply(state, **options), prob) for (state, prob) in e.args] return Density(*new_args) # For a raw TensorProduct, call qapply on its args. elif isinstance(e, TensorProduct): return TensorProduct(*[qapply(t, **options) for t in e.args]) # For a Sum, call qapply on its function. elif isinstance(e, Sum): result = Sum(qapply(e.function, **options), *e.limits) result = sum_doit_func(result) if sum_doit else result return result # For a Pow, call qapply on its base. elif isinstance(e, Pow): return qapply(e.base, **options)**e.exp # We have a Mul where there might be actual operators to apply to kets. elif isinstance(e, Mul): c_part, nc_part = e.args_cnc() c_mul = Mul(*c_part) nc_mul = Mul(*nc_part) if not nc_part: # If we only have a commuting part, just return it. result = c_mul elif isinstance(nc_mul, Mul): result = c_mul*qapply_Mul(nc_mul, **options) else: result = c_mul*qapply(nc_mul, **options) if result == e and dagger: result = Dagger(qapply_Mul(Dagger(e), **options)) result = ip_doit_func(result) if ip_doit else result result = sum_doit_func(result) if sum_doit else result return result # In all other cases (State, Operator, Pow, Commutator, InnerProduct, # OuterProduct) we won't ever have operators to apply to kets. else: return e def qapply_Mul(e, **options): args = list(e.args) extra = S.One result = None # If we only have 0 or 1 args, we have nothing to do and return. if len(args) <= 1 or not isinstance(e, Mul): return e rhs = args.pop() lhs = args.pop() # Make sure we have two non-commutative objects before proceeding. if (not isinstance(rhs, Wavefunction) and sympify(rhs).is_commutative) or \ (not isinstance(lhs, Wavefunction) and sympify(lhs).is_commutative): return e # For a Pow with an integer exponent, apply one of them and reduce the # exponent by one. if isinstance(lhs, Pow) and lhs.exp.is_Integer: args.append(lhs.base**(lhs.exp - 1)) lhs = lhs.base # Pull OuterProduct apart if isinstance(lhs, OuterProduct): args.append(lhs.ket) lhs = lhs.bra if isinstance(rhs, OuterProduct): extra = rhs.bra # Append to the right of the result rhs = rhs.ket # Call .doit() on Commutator/AntiCommutator. if isinstance(lhs, (Commutator, AntiCommutator)): comm = lhs.doit() if isinstance(comm, Add): return qapply( e.func(*(args + [comm.args[0], rhs])) + e.func(*(args + [comm.args[1], rhs])), **options )*extra else: return qapply(e.func(*args)*comm*rhs, **options)*extra # Apply tensor products of operators to states if isinstance(lhs, TensorProduct) and all(isinstance(arg, (Operator, State, Mul, Pow)) or arg == 1 for arg in lhs.args) and \ isinstance(rhs, TensorProduct) and all(isinstance(arg, (Operator, State, Mul, Pow)) or arg == 1 for arg in rhs.args) and \ len(lhs.args) == len(rhs.args): result = TensorProduct(*[qapply(lhs.args[n]*rhs.args[n], **options) for n in range(len(lhs.args))]).expand(tensorproduct=True) return qapply_Mul(e.func(*args), **options)*result*extra # For Sums, move the Sum to the right. if isinstance(rhs, Sum): if isinstance(lhs, Sum): if set(lhs.variables).intersection(set(rhs.variables)): raise ValueError('Duplicated dummy indices in separate sums in qapply.') limits = lhs.limits + rhs.limits result = Sum(qapply(lhs.function*rhs.function, **options), *limits) return qapply_Mul(e.func(*args)*result, **options) else: result = Sum(qapply(lhs*rhs.function, **options), *rhs.limits) return qapply_Mul(e.func(*args)*result, **options) if isinstance(lhs, Sum): result = Sum(qapply(lhs.function*rhs, **options), *lhs.limits) return qapply_Mul(e.func(*args)*result, **options) # Now try to actually apply the operator and build an inner product. _apply = getattr(lhs, '_apply_operator', None) if _apply is not None: try: result = _apply(rhs, **options) except NotImplementedError: result = None else: result = None if result is None: _apply_right = getattr(rhs, '_apply_from_right_to', None) if _apply_right is not None: try: result = _apply_right(lhs, **options) except NotImplementedError: result = None if result is None: if isinstance(lhs, BraBase) and isinstance(rhs, KetBase): result = InnerProduct(lhs, rhs) # TODO: I may need to expand before returning the final result. if isinstance(result, (int, complex, float)): return _sympify(result) elif result is None: if len(args) == 0: # We had two args to begin with so args=[]. return e else: return qapply_Mul(e.func(*(args + [lhs])), **options)*rhs*extra elif isinstance(result, InnerProduct): return result*qapply_Mul(e.func(*args), **options)*extra else: # result is a scalar times a Mul, Add or TensorProduct return qapply(e.func(*args)*result, **options)*extra