# Copyright The Lightning AI team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools from collections.abc import Iterable, Iterator, Sized from typing import Any, Callable, Optional, Union, cast import torch from torch import Tensor from torch.nn.parallel.distributed import DistributedDataParallel from torch.utils.data import DistributedSampler, Sampler from typing_extensions import Self, override from lightning_fabric.utilities.distributed import _DatasetSamplerWrapper from pytorch_lightning.utilities.rank_zero import rank_zero_debug, rank_zero_info from pytorch_lightning.utilities.types import _SizedIterable def _find_tensors( obj: Union[Tensor, list, tuple, dict, Any], ) -> Union[list[Tensor], itertools.chain]: # pragma: no-cover """Recursively find all tensors contained in the specified object.""" if isinstance(obj, Tensor): return [obj] if isinstance(obj, (list, tuple)): return itertools.chain(*map(_find_tensors, obj)) if isinstance(obj, dict): return itertools.chain(*map(_find_tensors, obj.values())) return [] # In manual_optimization, we need to call reducer prepare_for_backward. # Note: Keep track of PyTorch DDP and update if there is a change # https://github.com/pytorch/pytorch/blob/v2.0.0/torch/nn/parallel/distributed.py#L1163-L1178 def prepare_for_backward(model: DistributedDataParallel, output: Any) -> None: # `prepare_for_backward` is `DistributedDataParallel` specific. if torch.is_grad_enabled() and model.require_backward_grad_sync: model.require_forward_param_sync = True # We'll return the output object verbatim since it is a freeform # object. We need to find any tensors in this object, though, # because we need to figure out which parameters were used during # this forward pass, to ensure we short circuit reduction for any # unused parameters. Only if `find_unused_parameters` is set. args = list(_find_tensors(output)) if model.find_unused_parameters and not model.static_graph else [] reducer = cast(torch._C._distributed_c10d.Reducer, model.reducer) reducer._rebuild_buckets() # avoids "INTERNAL ASSERT FAILED" with `find_unused_parameters=False` reducer.prepare_for_backward(args) else: model.require_forward_param_sync = False def _register_ddp_comm_hook( model: DistributedDataParallel, ddp_comm_state: Optional[object] = None, ddp_comm_hook: Optional[Callable] = None, ddp_comm_wrapper: Optional[Callable] = None, ) -> None: """Function to register communication hook for DDP model https://pytorch.org/docs/master/ddp_comm_hooks.html. Args: model: DDP model ddp_comm_state: state is passed to the hook and can be used to maintain and update any state information that users would like to maintain as part of the training process. Examples: error feedback in gradient compression, peers to communicate with next in GossipGrad etc. ddp_comm_hook: hook(state: object, bucket: dist._GradBucket) -> torch.futures.Future This callable function is called once the bucket is ready. The hook can perform whatever processing is needed and return a Future indicating completion of any async work (ex: allreduce). If the hook doesn't perform any communication, it can also just return a completed Future. The Future should hold the new value of grad bucket's tensors. Once a bucket is ready, c10d reducer would call this hook and use the tensors returned by the Future and copy grads to individual parameters. ddp_comm_wrapper: communication hook wrapper to support a communication hook such as FP16 compression as wrapper, which could be combined with ddp_comm_hook Examples:: from torch.distributed.algorithms.ddp_comm_hooks import ( default_hooks as default, powerSGD_hook as powerSGD, post_localSGD_hook as post_localSGD, ) # fp16_compress_hook for compress gradients ddp_model = ... _register_ddp_comm_hook( model=ddp_model, ddp_comm_hook=default.fp16_compress_hook, ) # powerSGD_hook ddp_model = ... _register_ddp_comm_hook( model=ddp_model, ddp_comm_state=powerSGD.PowerSGDState( process_group=None, matrix_approximation_rank=1, start_powerSGD_iter=5000, ), ddp_comm_hook=powerSGD.powerSGD_hook, ) # post_localSGD_hook subgroup, _ = torch.distributed.new_subgroups() ddp_model = ... _register_ddp_comm_hook( model=ddp_model, state=post_localSGD.PostLocalSGDState( process_group=None, subgroup=subgroup, start_localSGD_iter=1_000, ), ddp_comm_hook=post_localSGD.post_localSGD_hook, ) # fp16_compress_wrapper combined with other communication hook ddp_model = ... _register_ddp_comm_hook( model=ddp_model, ddp_comm_state=powerSGD.PowerSGDState( process_group=None, matrix_approximation_rank=1, start_powerSGD_iter=5000, ), ddp_comm_hook=powerSGD.powerSGD_hook, ddp_comm_wrapper=default.fp16_compress_wrapper, ) """ if ddp_comm_hook is None: return # inform mypy that ddp_comm_hook is callable ddp_comm_hook: Callable = ddp_comm_hook if ddp_comm_wrapper is not None: rank_zero_info( f"DDP comm wrapper is provided, apply {ddp_comm_wrapper.__qualname__}({ddp_comm_hook.__qualname__})." ) ddp_comm_hook = ddp_comm_wrapper(ddp_comm_hook) rank_zero_debug(f"Registering DDP comm hook: {ddp_comm_hook.__qualname__}.") model.register_comm_hook(state=ddp_comm_state, hook=ddp_comm_hook) def _sync_module_states(module: torch.nn.Module) -> None: """Taken from https://github.com/pytorch/pytorch/blob/v2.0.0/torch/nn/parallel/distributed.py#L675-L682.""" parameters_to_ignore = set(getattr(module, "_ddp_params_and_buffers_to_ignore", [])) from torch.distributed.distributed_c10d import _get_default_group from torch.distributed.utils import _sync_module_states as torch_sync_module_states torch_sync_module_states( module, _get_default_group(), 250 * 1024 * 1024, src=0, params_and_buffers_to_ignore=parameters_to_ignore, ) class UnrepeatedDistributedSampler(DistributedSampler): """A fork of the PyTorch DistributedSampler that doesn't repeat data, instead allowing the number of batches per process to be off-by-one from each other. This makes this sampler usable for predictions (it's deterministic and doesn't require shuffling). It is potentially unsafe to use this sampler for training, because during training the DistributedDataParallel syncs buffers on each forward pass, so it could freeze if one of the processes runs one fewer batch. During prediction, buffers are only synced on the first batch, so this is safe to use as long as each process runs at least one batch. We verify this in an assert. Taken from https://github.com/jpuigcerver/PyLaia/blob/v1.0.0/laia/data/unpadded_distributed_sampler.py and https://github.com/pytorch/pytorch/issues/25162#issuecomment-634146002 """ def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, **kwargs) if not isinstance(self.dataset, Sized): raise TypeError("The given dataset must implement the `__len__` method.") self.num_samples = len(range(self.rank, len(self.dataset), self.num_replicas)) self.total_size = len(self.dataset) # If any process has at least one batch, every other process needs to # have at least one batch, or the DistributedDataParallel could lock up. assert self.num_samples >= 1 or self.total_size == 0 @override def __iter__(self) -> Iterator[list[int]]: if not isinstance(self.dataset, Sized): raise TypeError("The given dataset must implement the `__len__` method.") if self.shuffle: # deterministically shuffle based on epoch g = torch.Generator() g.manual_seed(self.epoch) indices = torch.randperm(len(self.dataset), generator=g).tolist() else: indices = list(range(len(self.dataset))) assert len(indices) == self.total_size # subsample indices = indices[self.rank : self.total_size : self.num_replicas] assert len(indices) == self.num_samples return iter(indices) class UnrepeatedDistributedSamplerWrapper(UnrepeatedDistributedSampler): """Equivalent class to ``DistributedSamplerWrapper`` but for the ``UnrepeatedDistributedSampler``.""" def __init__(self, sampler: Union[Sampler, Iterable], *args: Any, **kwargs: Any) -> None: super().__init__(_DatasetSamplerWrapper(sampler), *args, **kwargs) @override def __iter__(self) -> Iterator: self.dataset.reset() return (self.dataset[index] for index in super().__iter__()) class _IndexBatchSamplerWrapper: """This class is used to wrap a :class:`torch.utils.data.BatchSampler` and capture its indices.""" def __init__(self, batch_sampler: _SizedIterable) -> None: # do not call super().__init__() on purpose self.seen_batch_indices: list[list[int]] = [] self.__dict__ = { k: v for k, v in batch_sampler.__dict__.items() if k not in ("__next__", "__iter__", "__len__", "__getstate__") } self._batch_sampler = batch_sampler self._iterator: Optional[Iterator[list[int]]] = None def __next__(self) -> list[int]: assert self._iterator is not None batch = next(self._iterator) self.seen_batch_indices.append(batch) return batch def __iter__(self) -> Self: self.seen_batch_indices = [] self._iterator = iter(self._batch_sampler) return self def __len__(self) -> int: return len(self._batch_sampler) def __getstate__(self) -> dict[str, Any]: state = self.__dict__.copy() state["_iterator"] = None # cannot pickle 'generator' object return state