# Copyright The Lightning AI team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect from collections.abc import Generator from contextlib import AbstractContextManager, contextmanager from typing import Any, Callable, Optional import torch import torch.distributed as dist from torch import Tensor import pytorch_lightning as pl from lightning_fabric.utilities.distributed import _distributed_is_initialized from lightning_fabric.utilities.warnings import PossibleUserWarning from pytorch_lightning.accelerators.xla import XLAAccelerator from pytorch_lightning.callbacks.timer import Timer from pytorch_lightning.loops import _Loop from pytorch_lightning.loops.fetchers import _DataFetcher, _DataLoaderIterDataFetcher, _PrefetchDataFetcher from pytorch_lightning.loops.progress import _BaseProgress from pytorch_lightning.strategies import FSDPStrategy from pytorch_lightning.strategies.parallel import ParallelStrategy from pytorch_lightning.strategies.strategy import Strategy from pytorch_lightning.trainer.states import RunningStage from pytorch_lightning.utilities.rank_zero import rank_zero_warn from pytorch_lightning.utilities.signature_utils import is_param_in_hook_signature def check_finite_loss(loss: Optional[Tensor]) -> None: """Checks for finite loss value. Args: loss: the loss value to check to be finite """ if loss is not None and not torch.isfinite(loss).all(): raise ValueError(f"The loss returned in `training_step` is {loss}.") def _parse_loop_limits( min_steps: Optional[int], max_steps: int, min_epochs: Optional[int], max_epochs: Optional[int], trainer: "pl.Trainer", ) -> tuple[int, int]: """This utility computes the default values for the minimum and maximum number of steps and epochs given the values the user has selected. Args: min_steps: Minimum number of steps. max_steps: Maximum number of steps. min_epochs: Minimum number of epochs. max_epochs: Maximum number of epochs. trainer: Trainer instance. Returns: The parsed limits, with default values being set for the ones that the user did not specify. """ if max_epochs is None: if max_steps == -1 and not any(isinstance(cb, Timer) for cb in trainer.callbacks): rank_zero_warn( "`max_epochs` was not set. Setting it to 1000 epochs. To train without an epoch limit," " set `max_epochs=-1`.", category=PossibleUserWarning, ) max_epochs = 1000 else: max_epochs = -1 if min_epochs is None and min_steps is not None: # setting this allows FitLoop.done to re-evaluate should_stop when it gets triggered `on_fit_start` min_epochs = 1 if min_epochs is None: # the default value is 0 so no training will be done when should_stop is triggered `on_fit_start` min_epochs = 0 return min_epochs, max_epochs @contextmanager def _block_parallel_sync_behavior(strategy: Strategy, block: bool = True) -> Generator[None, None, None]: """Blocks synchronization in :class:`~pytorch_lightning.strategies.parallel.ParallelStrategy`. This is useful for example when accumulating gradients to reduce communication when it is not needed. Args: strategy: the strategy instance to use. block: whether the context manager is enabled or not Returns: context manager with sync behaviour off """ if isinstance(strategy, ParallelStrategy) and block: with strategy.block_backward_sync(): yield None else: yield None def _is_max_limit_reached(current: int, maximum: int = -1) -> bool: """Check if the limit has been reached (if enabled). Args: current: the current value maximum: the maximum value (or -1 to disable limit) Returns: bool: whether the limit has been reached """ return maximum != -1 and current >= maximum def _reset_progress(loop: _Loop) -> None: for v in vars(loop).values(): if isinstance(v, _BaseProgress): v.reset() elif isinstance(v, _Loop): _reset_progress(v) def _select_data_fetcher(trainer: "pl.Trainer", stage: RunningStage) -> _DataFetcher: lightning_module = trainer.lightning_module if stage == RunningStage.TESTING: step_fx_name = "test_step" elif stage == RunningStage.TRAINING: step_fx_name = "training_step" elif stage in (RunningStage.VALIDATING, RunningStage.SANITY_CHECKING): step_fx_name = "validation_step" elif stage == RunningStage.PREDICTING: step_fx_name = "predict_step" else: raise RuntimeError(f"DataFetcher is unsupported for {trainer.state.stage}") step_fx = getattr(lightning_module, step_fx_name) if is_param_in_hook_signature(step_fx, "dataloader_iter", explicit=True): rank_zero_warn( f"Found `dataloader_iter` argument in the `{step_fx_name}`. Note that the support for " "this signature is experimental and the behavior is subject to change." ) return _DataLoaderIterDataFetcher() return _PrefetchDataFetcher() def _no_grad_context(loop_run: Callable) -> Callable: def _decorator(self: _Loop, *args: Any, **kwargs: Any) -> Any: if not isinstance(self, _Loop): raise TypeError(f"`{type(self).__name__}` needs to be a Loop.") if not hasattr(self, "inference_mode"): raise TypeError(f"`{type(self).__name__}.inference_mode` needs to be defined") context_manager: type[AbstractContextManager] if _distributed_is_initialized() and dist.get_backend() == "gloo": # gloo backend does not work properly. # https://github.com/Lightning-AI/pytorch-lightning/pull/12715/files#r854569110 # TODO: explore why and possibly open an issue in PyTorch repository context_manager = torch.no_grad elif isinstance(self.trainer.accelerator, XLAAccelerator): context_manager = torch.no_grad elif isinstance(self.trainer.strategy, FSDPStrategy): # https://github.com/pytorch/pytorch/issues/95957 context_manager = torch.no_grad elif self.inference_mode: context_manager = torch.inference_mode else: context_manager = torch.no_grad with context_manager(): return loop_run(self, *args, **kwargs) return _decorator def _verify_dataloader_idx_requirement( hooks: tuple[str, ...], is_expected: bool, stage: RunningStage, pl_module: "pl.LightningModule" ) -> None: for hook in hooks: fx = getattr(pl_module, hook) # this validation only works if "dataloader_idx" is used, no other names such as "dl_idx" param_present = is_param_in_hook_signature(fx, "dataloader_idx") if not is_expected: if param_present: params = inspect.signature(fx).parameters if "dataloader_idx" in params and params["dataloader_idx"].default is inspect.Parameter.empty: raise RuntimeError( f"You provided only a single `{stage.dataloader_prefix}_dataloader`, but have included " f"`dataloader_idx` in `{type(pl_module).__name__}.{hook}()`. Either remove the" " argument or give it a default value i.e. `dataloader_idx=0`." ) elif not param_present: raise RuntimeError( f"You provided multiple `{stage.dataloader_prefix}_dataloader`, but no `dataloader_idx`" f" argument in `{type(pl_module).__name__}.{hook}()`. Try adding `dataloader_idx=0` to its" " signature." )