import logging import os import random from random import getstate as python_get_rng_state from random import setstate as python_set_rng_state from typing import Any, Optional import torch from lightning_fabric.utilities.imports import _NUMPY_AVAILABLE from lightning_fabric.utilities.rank_zero import _get_rank, rank_prefixed_message, rank_zero_only, rank_zero_warn log = logging.getLogger(__name__) max_seed_value = 4294967295 # 2^32 - 1 (uint32) min_seed_value = 0 def seed_everything(seed: Optional[int] = None, workers: bool = False, verbose: bool = True) -> int: r"""Function that sets the seed for pseudo-random number generators in: torch, numpy, and Python's random module. In addition, sets the following environment variables: - ``PL_GLOBAL_SEED``: will be passed to spawned subprocesses (e.g. ddp_spawn backend). - ``PL_SEED_WORKERS``: (optional) is set to 1 if ``workers=True``. Args: seed: the integer value seed for global random state in Lightning. If ``None``, it will read the seed from ``PL_GLOBAL_SEED`` env variable. If ``None`` and the ``PL_GLOBAL_SEED`` env variable is not set, then the seed defaults to 0. workers: if set to ``True``, will properly configure all dataloaders passed to the Trainer with a ``worker_init_fn``. If the user already provides such a function for their dataloaders, setting this argument will have no influence. See also: :func:`~lightning_fabric.utilities.seed.pl_worker_init_function`. verbose: Whether to print a message on each rank with the seed being set. """ if seed is None: env_seed = os.environ.get("PL_GLOBAL_SEED") if env_seed is None: seed = 0 rank_zero_warn(f"No seed found, seed set to {seed}") else: try: seed = int(env_seed) except ValueError: seed = 0 rank_zero_warn(f"Invalid seed found: {repr(env_seed)}, seed set to {seed}") elif not isinstance(seed, int): seed = int(seed) if not (min_seed_value <= seed <= max_seed_value): rank_zero_warn(f"{seed} is not in bounds, numpy accepts from {min_seed_value} to {max_seed_value}") seed = 0 if verbose: log.info(rank_prefixed_message(f"Seed set to {seed}", _get_rank())) os.environ["PL_GLOBAL_SEED"] = str(seed) random.seed(seed) if _NUMPY_AVAILABLE: import numpy as np np.random.seed(seed) torch.manual_seed(seed) os.environ["PL_SEED_WORKERS"] = f"{int(workers)}" return seed def reset_seed() -> None: r"""Reset the seed to the value that :func:`~lightning_fabric.utilities.seed.seed_everything` previously set. If :func:`~lightning_fabric.utilities.seed.seed_everything` is unused, this function will do nothing. """ seed = os.environ.get("PL_GLOBAL_SEED", None) if seed is None: return workers = os.environ.get("PL_SEED_WORKERS", "0") seed_everything(int(seed), workers=bool(int(workers)), verbose=False) def pl_worker_init_function(worker_id: int, rank: Optional[int] = None) -> None: # pragma: no cover r"""The worker_init_fn that Lightning automatically adds to your dataloader if you previously set the seed with ``seed_everything(seed, workers=True)``. See also the PyTorch documentation on `randomness in DataLoaders `_. """ # implementation notes: https://github.com/pytorch/pytorch/issues/5059#issuecomment-817392562 global_rank = rank if rank is not None else rank_zero_only.rank process_seed = torch.initial_seed() # back out the base seed so we can use all the bits base_seed = process_seed - worker_id log.debug( f"Initializing random number generators of process {global_rank} worker {worker_id} with base seed {base_seed}" ) seed_sequence = _generate_seed_sequence(base_seed, worker_id, global_rank, count=4) torch.manual_seed(seed_sequence[0]) # torch takes a 64-bit seed random.seed((seed_sequence[1] << 32) | seed_sequence[2]) # combine two 64-bit seeds if _NUMPY_AVAILABLE: import numpy as np ss = np.random.SeedSequence([base_seed, worker_id, global_rank]) np_rng_seed = ss.generate_state(4) np.random.seed(np_rng_seed) def _generate_seed_sequence(base_seed: int, worker_id: int, global_rank: int, count: int) -> list[int]: """Generates a sequence of seeds from a base seed, worker id and rank using the linear congruential generator (LCG) algorithm.""" # Combine base seed, worker id and rank into a unique 64-bit number combined_seed = (base_seed << 32) | (worker_id << 16) | global_rank seeds = [] for _ in range(count): # x_(n+1) = (a * x_n + c) mod m. With c=1, m=2^64 and a is D. Knuth's constant combined_seed = (combined_seed * 6364136223846793005 + 1) & ((1 << 64) - 1) seeds.append(combined_seed) return seeds def _collect_rng_states(include_cuda: bool = True) -> dict[str, Any]: r"""Collect the global random state of :mod:`torch`, :mod:`torch.cuda`, :mod:`numpy` and Python.""" states = { "torch": torch.get_rng_state(), "python": python_get_rng_state(), } if _NUMPY_AVAILABLE: import numpy as np states["numpy"] = np.random.get_state() if include_cuda: states["torch.cuda"] = torch.cuda.get_rng_state_all() if torch.cuda.is_available() else [] return states def _set_rng_states(rng_state_dict: dict[str, Any]) -> None: r"""Set the global random state of :mod:`torch`, :mod:`torch.cuda`, :mod:`numpy` and Python in the current process.""" torch.set_rng_state(rng_state_dict["torch"]) # torch.cuda rng_state is only included since v1.8. if "torch.cuda" in rng_state_dict: torch.cuda.set_rng_state_all(rng_state_dict["torch.cuda"]) if _NUMPY_AVAILABLE and "numpy" in rng_state_dict: import numpy as np np.random.set_state(rng_state_dict["numpy"]) version, state, gauss = rng_state_dict["python"] python_set_rng_state((version, tuple(state), gauss))