# Copyright The Lightning AI team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from contextlib import AbstractContextManager from typing import Any, Literal import torch from lightning_utilities.core.apply_func import apply_to_collection from torch import Tensor from torch.nn import Module from typing_extensions import override from lightning_fabric.plugins.precision.precision import Precision from lightning_fabric.plugins.precision.utils import _convert_fp_tensor, _DtypeContextManager class HalfPrecision(Precision): """Plugin for training with half precision. Args: precision: Whether to use ``torch.float16`` (``'16-true'``) or ``torch.bfloat16`` (``'bf16-true'``). """ precision: Literal["bf16-true", "16-true"] = "16-true" def __init__(self, precision: Literal["bf16-true", "16-true"] = "16-true") -> None: self.precision = precision self._desired_input_dtype = torch.bfloat16 if precision == "bf16-true" else torch.float16 @override def convert_module(self, module: Module) -> Module: return module.to(dtype=self._desired_input_dtype) @override def tensor_init_context(self) -> AbstractContextManager: return _DtypeContextManager(self._desired_input_dtype) @override def module_init_context(self) -> AbstractContextManager: return self.tensor_init_context() @override def forward_context(self) -> AbstractContextManager: return self.tensor_init_context() @override def convert_input(self, data: Any) -> Any: return apply_to_collection(data, function=_convert_fp_tensor, dtype=Tensor, dst_type=self._desired_input_dtype) @override def convert_output(self, data: Any) -> Any: return apply_to_collection(data, function=_convert_fp_tensor, dtype=Tensor, dst_type=torch.get_default_dtype())