# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. # Copyright 2019 Kakao Brain # # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Checkpointing with preceding recomputation. PyTorch already provides the official checkpointing utilities in :mod:`torch.utils.checkpoint`. The official checkpointing combines recomputation and recursive backpropagation into one autograd function named ``CheckpointFunction``. Hence, the recomputation can be started only when the gradients arrive to the function. In Pipe, the recomputation needs to precede the gradient arrival to minimize the GPU idle time. We solve this problem by introducing separate autograd functions named :class:`Recompute` and :class:`Checkpoint`. Each function represents recomputation and recursive backpropagation, respectively. We can manipulate the control flow in aspect of both the autograd engine and CUDA with a pair of the functions. Specifically, we place CUDA stream synchronization between :class:`Recompute` and :class:`Checkpoint` to delay only :class:`Checkpoint` until the gradient is copied entirely. """ from collections import deque from contextlib import contextmanager import threading from typing import TYPE_CHECKING, Deque, Generator, List, Optional, Tuple, Union import torch from torch import ByteTensor, Tensor import torch.autograd from .dependency import fork, join from .microbatch import Batch from .phony import get_phony __all__ = ["is_checkpointing", "is_recomputing"] Tensors = Tuple[Tensor, ...] TensorOrTensors = Union[Tensor, Tensors] # Types for shared memory between Checkpoint and Recompute. Recomputed = Tuple[TensorOrTensors, Tensors] # (output, input_leaf) RNGStates = Tuple[ByteTensor, Optional[ByteTensor]] # (cpu_rng_state, gpu_rng_state) if TYPE_CHECKING: from typing_extensions import Protocol else: Protocol = object # Protocol with __call__ instead of Callable can be used as an attribute type. # See: https://github.com/python/mypy/issues/708#issuecomment-561735949 class Function(Protocol): def __call__(self, input: TensorOrTensors) -> TensorOrTensors: ... class Checkpointing: """Generates a pair of :class:`Checkpoint` and :class:`Recompute`.""" def __init__(self, function: Function, batch: Batch) -> None: self.function = function self.batch = batch # Shared memory between Checkpoint and Recompute. 1-length deque is # used for mutability and length limitation. self.recomputed: Deque[Recomputed] = deque(maxlen=1) self.rng_states: Deque[RNGStates] = deque(maxlen=1) def checkpoint(self) -> Batch: """Returns a batch applied by :class:`Checkpoint`.""" input_atomic = self.batch.atomic input = tuple(self.batch) # Use a phony which requires grad to ensure that Checkpoint can be # tracked by the autograd engine even when none of the input tensors # require grad. phony = get_phony(self.batch[0].device, requires_grad=True) output = Checkpoint.apply(phony, self.recomputed, self.rng_states, self.function, input_atomic, *input) # Gradients are only supported for float Tensors. if isinstance(output, tuple): output = tuple([x if x.is_floating_point() else x.detach() for x in output]) return Batch(output, self.batch.index) def recompute(self, batch: Batch) -> None: """Applies :class:`Recompute` to the batch in place.""" input_atomic = self.batch.atomic input = tuple(self.batch) # batch[0] is always requiring grad, because it has been passed # checkpoint with a phony requiring grad. batch[0], phony = fork(batch[0]) phony = Recompute.apply(phony, self.recomputed, self.rng_states, self.function, input_atomic, *input) batch[0] = join(batch[0], phony) class ThreadLocal(threading.local): def __init__(self) -> None: self.is_checkpointing = False self.is_recomputing = False thread_local = ThreadLocal() @contextmanager def enable_checkpointing() -> Generator[None, None, None]: """Makes :func:`is_checkpointing` return :data:`True` within a context.""" orig = thread_local.is_checkpointing thread_local.is_checkpointing = True try: yield finally: thread_local.is_checkpointing = orig @contextmanager def enable_recomputing() -> Generator[None, None, None]: """Makes :func:`is_recomputing` return :data:`True` within a context.""" orig = thread_local.is_recomputing thread_local.is_recomputing = True try: yield finally: thread_local.is_recomputing = orig def is_checkpointing() -> bool: """Whether the current forward propagation is under checkpointing. Returns: bool: :data:`True` if it's under checkpointing. """ return thread_local.is_checkpointing def is_recomputing() -> bool: """Whether the current forward propagation is under checkpoint recomputation. Use this to prevent duplicated side-effects at forward propagation:: class Counter(nn.Module): def __init__(self): super().__init__() self.counter = 0 def forward(self, input): if not is_recomputing(): self.counter += 1 return input Returns: bool: :data:`True` if it's under checkpoint recomputation. .. seealso:: :ref:`Detecting Recomputation` """ return thread_local.is_recomputing class Context: """The common interface between the :class:`Checkpoint` and :class:`Recompute` context. """ recomputed: Deque[Recomputed] rng_states: Deque[RNGStates] function: Function input_atomic: bool saved_tensors: Tuple[Tensor, ...] def save_for_backward(self, *tensors: Tensor) -> None: # pragma: no cover pass def save_rng_states( device: torch.device, rng_states: Deque[RNGStates], ) -> None: """:meth:`Checkpoint.forward` captures the current PyTorch's random number generator states at CPU and GPU to reuse in :meth:`Recompute.backward`. .. seealso:: :ref:`Referential Transparency` """ cpu_rng_state = torch.get_rng_state() gpu_rng_state: Optional[ByteTensor] if device.type == "cuda": gpu_rng_state = torch.cuda.get_rng_state(device) else: gpu_rng_state = None rng_states.clear() rng_states.append((cpu_rng_state, gpu_rng_state)) @contextmanager def restore_rng_states( device: torch.device, rng_states: Deque[RNGStates], ) -> Generator[None, None, None]: """:meth:`Recompute.backward` restores the random number generator states captured by :func:`save_rng_states` within its context. .. seealso:: :ref:`Referential Transparency` """ cpu_rng_state, gpu_rng_state = rng_states[0] gpu_devices: List[torch.device] = [] if device.type == "cuda": gpu_devices.append(device) with torch.random.fork_rng(gpu_devices): torch.set_rng_state(cpu_rng_state) if gpu_rng_state is not None: torch.cuda.set_rng_state(gpu_rng_state, device) yield class Checkpoint(torch.autograd.Function): @staticmethod # type: ignore def forward( ctx: Context, phony: Tensor, recomputed: Deque[Recomputed], rng_states: Deque[RNGStates], function: Function, input_atomic: bool, *input: Tensor, ) -> TensorOrTensors: ctx.recomputed = recomputed ctx.rng_states = rng_states save_rng_states(input[0].device, ctx.rng_states) ctx.function = function ctx.input_atomic = input_atomic ctx.save_for_backward(*input) with torch.no_grad(), enable_checkpointing(): output = function(input[0] if input_atomic else input) return output @staticmethod def backward( ctx: Context, *grad_output: Tensor, ) -> Tuple[Optional[Tensor], ...]: # pragma: no cover output, input_leaf = ctx.recomputed.pop() if isinstance(output, tuple): tensors = output else: tensors = (output,) if any(y.requires_grad for y in tensors): tensors = tuple([x for x in tensors if x.requires_grad]) torch.autograd.backward(tensors, grad_output) grad_input: List[Optional[Tensor]] = [None, None, None, None, None] grad_input.extend(x.grad for x in input_leaf) return tuple(grad_input) class Recompute(torch.autograd.Function): @staticmethod # type: ignore def forward( ctx: Context, phony: Tensor, recomputed: Deque[Recomputed], rng_states: Deque[RNGStates], function: Function, input_atomic: bool, *input: Tensor, ) -> Tensor: ctx.recomputed = recomputed ctx.rng_states = rng_states ctx.function = function ctx.input_atomic = input_atomic ctx.save_for_backward(*input) return phony @staticmethod def backward(ctx: Context, *grad_output: Tensor) -> Tuple[None, ...]: # pragma: no cover input = ctx.saved_tensors input_leaf = tuple(x.detach().requires_grad_(x.requires_grad) for x in input) with restore_rng_states(input[0].device, ctx.rng_states): with torch.enable_grad(), enable_recomputing(): output = ctx.function(input_leaf[0] if ctx.input_atomic else input_leaf) ctx.recomputed.append((output, input_leaf)) grad_input: List[None] = [None, None, None, None, None] grad_input.extend(None for _ in ctx.saved_tensors) return tuple(grad_input)