# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team import sys import torch from collections import OrderedDict from deepspeed.utils import z3_leaf_module, set_z3_leaf_module from deepspeed.runtime.utils import see_memory_usage from deepspeed.runtime.zero.utils import apply_to_tensors_only, is_zero_param from deepspeed.runtime.zero.offload_config import OffloadDeviceEnum from deepspeed.runtime.zero.partition_parameters import _init_external_params from deepspeed.runtime.zero.partition_parameters import * from deepspeed.runtime.zero.partitioned_param_coordinator import PartitionedParameterCoordinator, InflightParamRegistry, iter_params from deepspeed.accelerator import get_accelerator from deepspeed import utils FWD_MODULE_STACK = list() #for each tensor in outputs run the forward_function and register backward_function as hook def _apply_forward_and_backward_to_tensors_only(module, forward_function, backward_function, outputs): if type(outputs) is tuple: touched_outputs = [] for output in outputs: touched_output = _apply_forward_and_backward_to_tensors_only(module, forward_function, backward_function, output) touched_outputs.append(touched_output) return tuple(touched_outputs) elif type(outputs) is torch.Tensor: forward_function(outputs) if outputs.requires_grad: outputs.register_hook(backward_function) return outputs else: return outputs class ZeROOrderedDict(OrderedDict): def __init__(self, parent_module, *args, **kwargs): """A replacement for ``collections.OrderedDict`` to detect external ZeRO params. Args: parent_module (``collections.OrderedDict``): the collection to replace """ super().__init__(*args, **kwargs) self._parent_module = parent_module self._in_forward = False def __reduce__(self): r0, _, *r2 = super().__reduce__() return (r0, (self._parent_module, )) + tuple(r2) def __getitem__(self, key): param = super().__getitem__(key) # Params can be registered as None (e.g., bias) if param is None: return param # TODO: only weaken this check during compilation if hasattr(param, "ds_status") and param.ds_status == ZeroParamStatus.NOT_AVAILABLE: if self._parent_module._parameters._in_forward: register_external_parameter(FWD_MODULE_STACK[-1], param) param.all_gather() print_rank_0(f'Registering external parameter from getter {key} ds_id = {param.ds_id}', force=False) return param def _inject_parameters(module, cls): for module in module.modules(): module._original_parameters = module._parameters if cls == ZeROOrderedDict: new_param = cls(parent_module=module) else: new_param = cls() for key, param in module._parameters.items(): new_param[key] = param module._parameters = new_param class DeepSpeedZeRoOffload(object): def __init__( self, module, timers, ds_config, overlap_comm=True, prefetch_bucket_size=50000000, max_reuse_distance=1000000000, max_live_parameters=1000000000, param_persistence_threshold=100000, model_persistence_threshold=sys.maxsize, dp_process_group=None, offload_param_config=None, mpu=None, zero_param_parallel_group=None, zero_quantized_weights=False, zero_quantized_nontrainable_weights=False, zero_module_granularity_threshold=0, log_trace_cache_warnings=False, ): see_memory_usage("DeepSpeedZeRoOffload initialize [begin]", force=True) print_rank_0(f"initialized {__class__.__name__} with args: {locals()}", force=False) self.module = module self.timers = timers self.dtype = list(module.parameters())[0].dtype self.dp_process_group = dp_process_group self.offload_device = None self.offload_param_pin_memory = False self.zero_param_parallel_group = zero_param_parallel_group self.zero_quantized_weights = zero_quantized_weights self.zero_quantized_nontrainable_weights = zero_quantized_nontrainable_weights self.log_trace_cache_warnings = log_trace_cache_warnings if offload_param_config is not None and offload_param_config.device != OffloadDeviceEnum.none: self.offload_device = offload_param_config.device self.offload_param_pin_memory = offload_param_config.pin_memory self._convert_to_zero_parameters(ds_config, module, mpu) for m in module.modules(): _init_external_params(m) _inject_parameters(module, ZeROOrderedDict) self.param_numel_persistence_threshold = int(param_persistence_threshold) self.model_persistence_threshold = int(model_persistence_threshold) self.persistent_parameters = self.mark_persistent_parameters(self.param_numel_persistence_threshold, self.model_persistence_threshold) self._prefetch_bucket_sz = int(prefetch_bucket_size) self._max_reuse_distance_in_numel = int(max_reuse_distance) self._max_available_parameters_in_numel = int(max_live_parameters) self.__allgather_stream = None if get_accelerator().is_synchronized_device() else get_accelerator().Stream( ) if overlap_comm else get_accelerator().default_stream() if not hasattr(module, "ds_inflight_param_registry"): module.ds_inflight_param_registry = InflightParamRegistry() self.__inflight_param_registry = module.ds_inflight_param_registry self.fast_sharding_for_leaf_module = False if zero_module_granularity_threshold > 0: self.min_granularity_value = sys.maxsize self.min_granularity_layer = None self.granularity_info = set() self.z3_leaf_layers = [] self._set_z3_leaf_modules_by_threshold(module, zero_module_granularity_threshold) self.fast_sharding_for_leaf_module = True self.param_coordinator = PartitionedParameterCoordinator( prefetch_bucket_sz=self._prefetch_bucket_sz, max_reuse_distance_in_numel=self._max_reuse_distance_in_numel, max_available_parameters_in_numel=self._max_available_parameters_in_numel, allgather_stream=self.__allgather_stream, inflight_param_registry=self.__inflight_param_registry, prefetch_nvme=self.offload_device == OffloadDeviceEnum.nvme, timers=self.timers, zero_quantized_weights=self.zero_quantized_weights, zero_quantized_nontrainable_weights=self.zero_quantized_nontrainable_weights, fast_sharding_for_leaf_module=self.fast_sharding_for_leaf_module, log_trace_cache_warnings=self.log_trace_cache_warnings, ) self.forward_hooks = [] self.backward_hooks = [] self.setup_zero_stage3_hooks() print_rank_0( f'Created module hooks: forward = {len(self.forward_hooks)}, backward = {len(self.backward_hooks)}', force=False) see_memory_usage("DeepSpeedZeRoOffload initialize [end]", force=True) @instrument_w_nvtx def partition_all_parameters(self): """Partitioning Parameters that were not partitioned usually if parameters of modules whose input parameters do not require grad computation do not trigger post call and will therefore will remain unpartitioned""" self.get_param_coordinator().release_and_reset_all(self.module) for param in iter_params(self.module, recurse=True): if param.ds_status != ZeroParamStatus.NOT_AVAILABLE: raise RuntimeError(f"{param.ds_summary()} expected to be released") def get_param_coordinator(self): return self.param_coordinator def empty_partition_cache(self): self.partition_all_parameters() def _convert_to_zero_parameters(self, ds_config, module, mpu): non_zero_params = [p for p in module.parameters() if not is_zero_param(p)] if non_zero_params: zero_params = [p for p in module.parameters() if is_zero_param(p)] if zero_params: zero_params[0].convert_to_zero_parameters(param_list=non_zero_params) else: group = None # parallel_state_sp doesn't have get_data_parallel_group if mpu and hasattr(mpu, "get_data_parallel_group"): group = mpu.get_data_parallel_group() Init(module=module, data_parallel_group=group, dtype=self.dtype, config_dict_or_path=ds_config, remote_device=self.offload_device, pin_memory=self.offload_param_pin_memory, mpu=mpu, zero_param_parallel_group=self.zero_param_parallel_group, zero_quantized_weights=self.zero_quantized_weights, zero_quantized_nontrainable_weights=self.zero_quantized_nontrainable_weights) def destroy(self): self._remove_module_hooks() def _remove_module_hooks(self): num_forward_hooks = len(self.forward_hooks) num_backward_hooks = len(self.backward_hooks) for hook in self.forward_hooks: hook.remove() for hook in self.backward_hooks: hook.remove() self.fwd_pre_hook.remove() print_rank_0(f'Deleted module hooks: forward = {num_forward_hooks}, backward = {num_backward_hooks}', force=False) def setup_zero_stage3_hooks(self): self.hierarchy = 0 #reset step if in inference mode @instrument_w_nvtx def _start_of_forward_hook(module, *args): self.get_param_coordinator().reset_step() self.fwd_pre_hook = self.module.register_forward_pre_hook(_start_of_forward_hook) #likely one of them should be enough but just to be safe self._register_deepspeed_module(self.module) # Add top module to stack trace global FWD_MODULE_STACK FWD_MODULE_STACK.append(self.module) def mark_persistent_parameters(self, param_threshold, model_threshold): persistent_params = [] total_persistent_parameters = 0 params_count = 0 for name, param in self.module.named_parameters(recurse=True): if param.ds_numel + total_persistent_parameters > model_threshold: continue if param.ds_numel <= param_threshold: params_count += 1 param.ds_persist = True persistent_params.append(param) total_persistent_parameters += param.ds_numel print_rank_0( f"Parameter Offload - Persistent parameters statistics: param_count = {params_count}, numel = {total_persistent_parameters}", force=True) return persistent_params def _register_deepspeed_module(self, module, count=[0]): my_count = count[0] module.ds_id = my_count #print(f"{module.__class__} : {module.ds_id}") if z3_leaf_module(module): for param in module.parameters(): param.ds_z3_leaf_module = module else: for child in module.children(): count[0] = count[0] + 1 self._register_deepspeed_module(child, count=count) @torch.compiler.disable def _pre_forward_module_hook(module, *args): self.pre_sub_module_forward_function(module) @instrument_w_nvtx def _post_forward_module_hook(module, input, output): global FWD_MODULE_STACK FWD_MODULE_STACK.pop() if output is None: output = [] elif not isinstance(output, (list, tuple)): if torch.is_tensor(output): output = [output] else: #print(f'got UNKNOWN type {type(output)}') outputs = [] output = output if isinstance(output, dict) else vars(output) for name, val in output.items(): if not name.startswith('__') and torch.is_tensor(val): outputs.append(val) output = outputs for item in filter(lambda item: is_zero_param(item) or hasattr(item, 'ds_param_alias'), output): key = id(item) if hasattr(item, 'ds_id') else id(item.ds_param_alias) actual_external_param = item if hasattr(item, 'ds_id') else item.ds_param_alias if not any(key in m._external_params for m in FWD_MODULE_STACK): actual_external_param.is_external_param = True module_to_register = FWD_MODULE_STACK[-1] register_external_parameter(module_to_register, actual_external_param) print_rank_0( f'Registering dangling parameter for module {module_to_register.__class__.__name__}, ds_id = {actual_external_param.ds_id}.', force=False) # It's possible that the parameter was already external to the completed module. If so, remove it the # registration as it will be covered by the outer module instead. if key in module._external_params: print_rank_0( f' Unregistering nested dangling parameter from module {module.__class__.__name__}, ds_id = {actual_external_param.ds_id}', force=False) unregister_external_parameter(module, actual_external_param) actual_external_param.all_gather() self.post_sub_module_forward_function(module) def _bwd_hook_unexpected_inputs_msg(value): return f"A module has unknown inputs or outputs type ({type(value)}) and the tensors embedded in it cannot be detected. " \ "The ZeRO-3 hooks designed to trigger before or after backward pass of the module relies on knowing the input and " \ "output tensors and therefore may not get triggered properly." def _pre_backward_module_hook(module, inputs, output): return apply_to_tensors_only(module.pre_bwd_fn.apply, output, warning_msg_fn=_bwd_hook_unexpected_inputs_msg) #This is an alternate to doing _post_backward_module_hook #it uses tensor.register_hook instead of using torch.autograd.Function def _alternate_post_backward_module_hook(module, inputs): module.ds_grads_remaining = 0 #print(f"Before Forward {module.__class__.__name__}") def _run_after_backward_hook(*unused): module.ds_grads_remaining = module.ds_grads_remaining - 1 if module.ds_grads_remaining == 0: #print(f"After backward {module.__class__.__name__}") self.post_sub_module_backward_function(module) def _run_before_forward_function(input): if input.requires_grad: module.ds_grads_remaining += 1 return _apply_forward_and_backward_to_tensors_only(module, _run_before_forward_function, _run_after_backward_hook, inputs) @torch.compiler.disable def _post_backward_module_hook(module, inputs): module.ds_grads_remaining = 0 return apply_to_tensors_only(module.post_bwd_fn.apply, inputs, warning_msg_fn=_bwd_hook_unexpected_inputs_msg) # Pre forward hook self.forward_hooks.append(module.register_forward_pre_hook(_pre_forward_module_hook)) # Post forward hook self.forward_hooks.append(module.register_forward_hook(_post_forward_module_hook)) # Pre backward hook if not hasattr(module, "pre_bwd_fn"): @instrument_w_nvtx def _run_before_backward_function(sub_module): # some models (e.g. Albert) may run multiple forwards on the same layer in a loop # before doing backwards, so each backward will need a pre-fetch - using reference # counting to support this scenario #print(f"COUNTER before: {sub_module.applied_pre_backward_ref_cnt}") if sub_module.applied_pre_backward_ref_cnt > 0: self.pre_sub_module_backward_function(sub_module) sub_module.applied_pre_backward_ref_cnt -= 1 #print(f"COUNTER after: {sub_module.applied_pre_backward_ref_cnt}") class PreBackwardFunctionForModule(torch.autograd.Function): @staticmethod def forward(ctx, outputs): # Capture `module` and _run_before_backward_function ctx.module = module ctx.pre_backward_function = _run_before_backward_function if not hasattr(ctx.module, "applied_pre_backward_ref_cnt"): ctx.module.applied_pre_backward_ref_cnt = 0 ctx.module.applied_pre_backward_ref_cnt += 1 outputs = outputs.detach() return outputs @staticmethod def backward(ctx, *args): ctx.pre_backward_function(ctx.module) return args module.pre_bwd_fn = PreBackwardFunctionForModule self.backward_hooks.append(module.register_forward_hook(_pre_backward_module_hook)) # post backward hook if not hasattr(module, "post_bwd_fn"): @instrument_w_nvtx def _run_after_backward_function(sub_module): if sub_module.ds_grads_remaining == 0: self.post_sub_module_backward_function(sub_module) class PostBackwardFunctionModule(torch.autograd.Function): @staticmethod def forward(ctx, output): ctx.module = module if output.requires_grad: #TODO SOME TIMES post backward does not seem to be triggered debug in detail #Should only cause increase in memory not correctness issue #if output.grad_fn.__class__.__name__ == 'ViewBackward': # ctx.view=True # print(f"Warning view tensor for input to module : {module.__class__.__name__}. Backward hooks may not trigger properly") #assert len(module.parameters(recurse=False)), "The input tensor to the module is a view, and autograd Function or register_hook is not triggered with view tensors." #if module.ds_grads_remaining == 0: # print(f"Before Forward: {ctx.module.__class__.__name__}") module.ds_grads_remaining += 1 ctx.post_backward_function = _run_after_backward_function output = output.detach() return output @staticmethod def backward(ctx, *args): ctx.module.ds_grads_remaining = ctx.module.ds_grads_remaining - 1 if ctx.module.ds_grads_remaining == 0: ctx.post_backward_function(ctx.module) return args module.post_bwd_fn = PostBackwardFunctionModule self.backward_hooks.append(module.register_forward_pre_hook(_post_backward_module_hook)) @torch.no_grad() def pre_sub_module_forward_function(self, sub_module): see_memory_usage(f"Before sub module function {sub_module.__class__.__name__}", force=False) global FWD_MODULE_STACK FWD_MODULE_STACK.append(sub_module) param_coordinator = self.get_param_coordinator() param_coordinator.trace_prologue(sub_module) if param_coordinator.is_record_trace(): param_coordinator.record_module(sub_module) param_coordinator.fetch_sub_module(sub_module, forward=True) see_memory_usage(f"Before sub module function {sub_module.__class__.__name__} after fetch", force=False) @torch.no_grad() def post_sub_module_forward_function(self, sub_module): see_memory_usage( f"After sub module function {sub_module.__class__.__name__} {sub_module.ds_id} before release", force=False) param_coordinator = self.get_param_coordinator() param_coordinator.release_sub_module(sub_module, forward=True) see_memory_usage( f"After sub module function {sub_module.__class__.__name__} {sub_module.ds_id} after release", force=False) @torch.no_grad() def pre_sub_module_backward_function(self, sub_module): # assert sub_module.training, "backward pass is invalid for module in evaluation mode" param_coordinator = self.get_param_coordinator() param_coordinator.trace_prologue(sub_module) if param_coordinator.is_record_trace(): param_coordinator.record_module(sub_module) param_coordinator.fetch_sub_module(sub_module, forward=False) @torch.no_grad() def post_sub_module_backward_function(self, sub_module): # assert sub_module.training, "backward pass is invalid for module in evaluation mode" see_memory_usage( f"After sub module backward function {sub_module.__class__.__name__} {sub_module.ds_id} before release", force=False) self.get_param_coordinator().release_sub_module(sub_module, forward=False) see_memory_usage( f"After sub module backward function {sub_module.__class__.__name__} {sub_module.ds_id} after release", force=False) def _set_z3_leaf_modules_by_threshold(self, module, zero_module_granularity_threshold): self._get_granularity_recursively(module) print_rank_0(f"{'MODULE NAME'.ljust(30)}|{'GRANULARITY VALUE'.rjust(20)}", force=True) for granularity in self.granularity_info: print_rank_0(granularity, force=True) if self.min_granularity_value <= zero_module_granularity_threshold: self._set_leaf_by_threshold_preorder(module, zero_module_granularity_threshold) utils.logger.info( f"z3_leaf_module was set by stage3_module_granularity_threshold:{zero_module_granularity_threshold}") for layer in self.z3_leaf_layers: print_rank_0(f"{layer.__class__.__name__}:{layer.ds_model_granularity}", force=True) else: utils.logger.warning( f"The smallest module granularity is [{self.min_granularity_layer}:{self.min_granularity_value}]. "\ f"To make stage3_module_granularity_threshold effective, you need to set stage3_module_granularity_threshold >= {self.min_granularity_value}. "\ f"Current Value:{zero_module_granularity_threshold}" ) def _get_granularity_recursively(self, module): """This function is used to recursively obtain the granularity of each module.""" # avoid setting as leaf for particularly large models, even if the granularity is very small # an oversized leaf module increases the number of live parameters, introducing memory overhead Z3_MAX_LEAF_SIZE = 1e9 if not list(module.parameters()): # skip Modules without parameters, such as GELU, etc. module.ds_model_granularity = sys.maxsize return 0, 0 num_layers = 0 num_params = 0 num_params += sum(p.ds_numel for p in module.parameters(recurse=False)) if not any(module.children()): # torch leaf module module.ds_model_granularity = sys.maxsize return 1, num_params for child in module.children(): layers_in_child, params_in_child = self._get_granularity_recursively(child) num_layers += layers_in_child num_params += params_in_child if module.__class__.__name__ in torch.nn.modules.container.__all__: # Do not set container modules like ModuleList as leaf modules # as this will prevent hooks from being set on their children # and they may do not invoke the forward method module.ds_model_granularity = sys.maxsize return num_layers, num_params num_layers += 1 ds_model_granularity = (num_params // num_layers) if num_params <= Z3_MAX_LEAF_SIZE else sys.maxsize module.ds_model_granularity = ds_model_granularity # module.ds_model_num_layers = num_layers # module.ds_model_num_params = num_params if self.min_granularity_value > ds_model_granularity: self.min_granularity_value = ds_model_granularity self.min_granularity_layer = module.__class__.__name__ self.granularity_info.add(f"{module.__class__.__name__.ljust(30)}|{str(ds_model_granularity).rjust(20)}") return num_layers, num_params def _set_leaf_by_threshold_preorder(self, module, granularity_treshhold): '''Set modules as leaf modules based on the threshold, prioritizing parent nodes.''' num_params = sum(p.ds_numel for p in module.parameters()) if num_params == 0: # skip Modules without parameters, such as GELU, etc. return if module.ds_model_granularity <= granularity_treshhold: set_z3_leaf_module(module, True) self.z3_leaf_layers.append(module) return for sub_module in module.children(): self._set_leaf_by_threshold_preorder(sub_module, granularity_treshhold)