# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team from typing import List import torch from torch.fx import GraphModule from ..util import get_deepcompile_handle from ..fx import add_postprocess, move_primals_to_head, _make_node_meta NAME = "zero1_compile" def add_z1_reduce_fw(gm: GraphModule, graph_id: int, profiling_results, param_manager) -> GraphModule: dc = get_deepcompile_handle() param_indices = profiling_results[graph_id].param_indices dc.register_graph_z1(graph_id, [v[1] for v in param_indices]) # Need this before profiling return gm def add_z1_reduce_bw(gm: GraphModule, graph_id: int, param_manager) -> GraphModule: graph = gm.graph pm = param_manager[graph_id] _, param_name_to_grad = pm.get_bwd_mapping(graph) for param_name in pm.param_names: grad_node = param_name_to_grad[param_name] assert param_name in pm.ds_ids, f"param_name={param_name} not in ds_ids" ds_id = pm.ds_ids[param_name] new_node = add_postprocess(graph, grad_node, torch.ops.dc.reduce_grad.default, extra_args=[graph_id, ds_id], name=f"reduce_param_{param_name}", meta=_make_node_meta(grad_node, param_name, True)) new_node.meta["val"] = None gm.graph = move_primals_to_head(graph) return gm def add_z1_reduce(gm: GraphModule, graph_id: int, graph_order: List[int], profiling_results, create_inputs_fn, mem_budget: float, param_manager, bwd: bool) -> GraphModule: if bwd: return add_z1_reduce_bw(gm, graph_id, param_manager) return add_z1_reduce_fw(gm, graph_id, profiling_results, param_manager)