import io import json import re from itertools import islice from typing import Any, Callable import fsspec import numpy as np import pyarrow as pa import datasets from datasets.features.features import cast_to_python_objects from datasets.utils.file_utils import SINGLE_FILE_COMPRESSION_EXTENSION_TO_PROTOCOL, xbasename logger = datasets.utils.logging.get_logger(__name__) class WebDataset(datasets.GeneratorBasedBuilder): DEFAULT_WRITER_BATCH_SIZE = 100 IMAGE_EXTENSIONS: list[str] # definition at the bottom of the script AUDIO_EXTENSIONS: list[str] # definition at the bottom of the script VIDEO_EXTENSIONS: list[str] # definition at the bottom of the script DECODERS: dict[str, Callable[[Any], Any]] # definition at the bottom of the script NUM_EXAMPLES_FOR_FEATURES_INFERENCE = 5 @classmethod def _get_pipeline_from_tar(cls, tar_path, tar_iterator): current_example = {} fs: fsspec.AbstractFileSystem = fsspec.filesystem("memory") streaming_download_manager = datasets.StreamingDownloadManager() for filename, f in tar_iterator: example_key, field_name = base_plus_ext(filename) if example_key is None: continue if current_example and current_example["__key__"] != example_key: # reposition some keys in last position current_example["__key__"] = current_example.pop("__key__") current_example["__url__"] = current_example.pop("__url__") yield current_example current_example = {} current_example["__key__"] = example_key current_example["__url__"] = tar_path current_example[field_name.lower()] = f.read() if field_name.split(".")[-1] in SINGLE_FILE_COMPRESSION_EXTENSION_TO_PROTOCOL: fs.write_bytes(filename, current_example[field_name.lower()]) extracted_file_path = streaming_download_manager.extract(f"memory://{filename}") with fsspec.open(extracted_file_path) as f: current_example[field_name.lower()] = f.read() fs.delete(filename) data_extension = xbasename(extracted_file_path).split(".")[-1] else: data_extension = field_name.split(".")[-1] if data_extension in cls.DECODERS: current_example[field_name] = cls.DECODERS[data_extension](current_example[field_name]) if current_example: yield current_example def _info(self) -> datasets.DatasetInfo: return datasets.DatasetInfo() def _split_generators(self, dl_manager): """We handle string, list and dicts in datafiles""" # Download the data files if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") data_files = dl_manager.download(self.config.data_files) splits = [] for split_name, tar_paths in data_files.items(): if isinstance(tar_paths, str): tar_paths = [tar_paths] tar_iterators = [dl_manager.iter_archive(tar_path) for tar_path in tar_paths] splits.append( datasets.SplitGenerator( name=split_name, gen_kwargs={"tar_paths": tar_paths, "tar_iterators": tar_iterators} ) ) if not self.info.features: # Get one example to get the feature types pipeline = self._get_pipeline_from_tar(tar_paths[0], tar_iterators[0]) first_examples = list(islice(pipeline, self.NUM_EXAMPLES_FOR_FEATURES_INFERENCE)) if any(example.keys() != first_examples[0].keys() for example in first_examples): raise ValueError( "The TAR archives of the dataset should be in WebDataset format, " "but the files in the archive don't share the same prefix or the same types." ) pa_tables = [ pa.Table.from_pylist(cast_to_python_objects([example], only_1d_for_numpy=True)) for example in first_examples ] inferred_arrow_schema = pa.concat_tables(pa_tables, promote_options="default").schema features = datasets.Features.from_arrow_schema(inferred_arrow_schema) # Set Image types for field_name in first_examples[0]: extension = field_name.rsplit(".", 1)[-1] if extension in self.IMAGE_EXTENSIONS: features[field_name] = datasets.Image() # Set Audio types for field_name in first_examples[0]: extension = field_name.rsplit(".", 1)[-1] if extension in self.AUDIO_EXTENSIONS: features[field_name] = datasets.Audio() # Set Video types for field_name in first_examples[0]: extension = field_name.rsplit(".", 1)[-1] if extension in self.VIDEO_EXTENSIONS: features[field_name] = datasets.Video() self.info.features = features return splits def _generate_examples(self, tar_paths, tar_iterators): image_field_names = [ field_name for field_name, feature in self.info.features.items() if isinstance(feature, datasets.Image) ] audio_field_names = [ field_name for field_name, feature in self.info.features.items() if isinstance(feature, datasets.Audio) ] all_field_names = list(self.info.features.keys()) for tar_idx, (tar_path, tar_iterator) in enumerate(zip(tar_paths, tar_iterators)): for example_idx, example in enumerate(self._get_pipeline_from_tar(tar_path, tar_iterator)): for field_name in all_field_names: if field_name not in example: example[field_name] = None for field_name in image_field_names + audio_field_names: if example[field_name] is not None: example[field_name] = { "path": example["__key__"] + "." + field_name, "bytes": example[field_name], } yield f"{tar_idx}_{example_idx}", example # Source: https://github.com/webdataset/webdataset/blob/87bd5aa41602d57f070f65a670893ee625702f2f/webdataset/tariterators.py#L25 def base_plus_ext(path): """Split off all file extensions. Returns base, allext. """ match = re.match(r"^((?:.*/|)[^.]+)[.]([^/]*)$", path) if not match: return None, None return match.group(1), match.group(2) # Obtained with: # ``` # import PIL.Image # IMAGE_EXTENSIONS = [] # PIL.Image.init() # for ext, format in PIL.Image.EXTENSION.items(): # if format in PIL.Image.OPEN: # IMAGE_EXTENSIONS.append(ext[1:]) # ``` # We intentionally do not run this code on launch because: # (1) Pillow is an optional dependency, so importing Pillow in global namespace is not allowed # (2) To ensure the list of supported extensions is deterministic IMAGE_EXTENSIONS = [ "blp", "bmp", "dib", "bufr", "cur", "pcx", "dcx", "dds", "ps", "eps", "fit", "fits", "fli", "flc", "ftc", "ftu", "gbr", "gif", "grib", "h5", "hdf", "png", "apng", "jp2", "j2k", "jpc", "jpf", "jpx", "j2c", "icns", "ico", "im", "iim", "tif", "tiff", "jfif", "jpe", "jpg", "jpeg", "mpg", "mpeg", "msp", "pcd", "pxr", "pbm", "pgm", "ppm", "pnm", "psd", "bw", "rgb", "rgba", "sgi", "ras", "tga", "icb", "vda", "vst", "webp", "wmf", "emf", "xbm", "xpm", ] WebDataset.IMAGE_EXTENSIONS = IMAGE_EXTENSIONS # Obtained with: # ``` # import soundfile as sf # # AUDIO_EXTENSIONS = [f".{format.lower()}" for format in sf.available_formats().keys()] # # # .opus decoding is supported if libsndfile >= 1.0.31: # AUDIO_EXTENSIONS.extend([".mp3", ".opus"]) # ``` # We intentionally do not run this code on launch because: # (1) Soundfile is an optional dependency, so importing it in global namespace is not allowed # (2) To ensure the list of supported extensions is deterministic AUDIO_EXTENSIONS = [ "aiff", "au", "avr", "caf", "flac", "htk", "svx", "mat4", "mat5", "mpc2k", "ogg", "paf", "pvf", "raw", "rf64", "sd2", "sds", "ircam", "voc", "w64", "wav", "nist", "wavex", "wve", "xi", "mp3", "opus", ] WebDataset.AUDIO_EXTENSIONS = AUDIO_EXTENSIONS # TODO: initial list, we should check the compatibility of other formats VIDEO_EXTENSIONS = [ ".mkv", ".mp4", ".avi", ".mpeg", ".mov", ] WebDataset.VIDEO_EXTENSIONS = VIDEO_EXTENSIONS def text_loads(data: bytes): return data.decode("utf-8") def tenbin_loads(data: bytes): from . import _tenbin return _tenbin.decode_buffer(data) def msgpack_loads(data: bytes): import msgpack return msgpack.unpackb(data) def npy_loads(data: bytes): import numpy.lib.format stream = io.BytesIO(data) return numpy.lib.format.read_array(stream, allow_pickle=False) def npz_loads(data: bytes): return np.load(io.BytesIO(data), allow_pickle=False) def cbor_loads(data: bytes): import cbor return cbor.loads(data) def torch_loads(data: bytes): import torch return torch.load(io.BytesIO(data), weights_only=True) # Obtained by checking `decoders` in `webdataset.autodecode` # and removing unsafe extension decoders. # Removed Pickle decoders: # - "pyd": lambda data: pickle.loads(data) # - "pickle": lambda data: pickle.loads(data) # Modified NumPy decoders to fix CVE-2019-6446 (add allow_pickle=False and weights_only=True): # - "npy": npy_loads, # - "npz": lambda data: np.load(io.BytesIO(data)), # - "pth": lambda data: torch_loads(data) DECODERS = { "txt": text_loads, "text": text_loads, "transcript": text_loads, "cls": int, "cls2": int, "index": int, "inx": int, "id": int, "json": json.loads, "jsn": json.loads, "ten": tenbin_loads, "tb": tenbin_loads, "mp": msgpack_loads, "msg": msgpack_loads, "npy": npy_loads, "npz": npz_loads, "cbor": cbor_loads, "pth": torch_loads, } WebDataset.DECODERS = DECODERS