# Copyright 2020 The HuggingFace Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import operator from collections.abc import Iterable, Mapping, MutableMapping from functools import partial # Lint as: python3 from typing import Any, Callable, Generic, Optional, TypeVar, Union import numpy as np import pandas as pd import pyarrow as pa from ..features import Features from ..features.features import _ArrayXDExtensionType, _is_zero_copy_only, decode_nested_example, pandas_types_mapper from ..table import Table from ..utils.py_utils import no_op_if_value_is_null T = TypeVar("T") RowFormat = TypeVar("RowFormat") ColumnFormat = TypeVar("ColumnFormat") BatchFormat = TypeVar("BatchFormat") def _is_range_contiguous(key: range) -> bool: return key.step == 1 and key.stop >= key.start def _raise_bad_key_type(key: Any): raise TypeError( f"Wrong key type: '{key}' of type '{type(key)}'. Expected one of int, slice, range, str or Iterable." ) def _query_table_with_indices_mapping( table: Table, key: Union[int, slice, range, str, Iterable], indices: Table ) -> pa.Table: """ Query a pyarrow Table to extract the subtable that correspond to the given key. The :obj:`indices` parameter corresponds to the indices mapping in case we cant to take into account a shuffling or an indices selection for example. The indices table must contain one column named "indices" of type uint64. """ if isinstance(key, int): key = indices.fast_slice(key % indices.num_rows, 1).column(0)[0].as_py() return _query_table(table, key) if isinstance(key, slice): key = range(*key.indices(indices.num_rows)) if isinstance(key, range): if _is_range_contiguous(key) and key.start >= 0: return _query_table( table, [i.as_py() for i in indices.fast_slice(key.start, key.stop - key.start).column(0)] ) else: pass # treat as an iterable if isinstance(key, str): table = table.select([key]) return _query_table(table, indices.column(0).to_pylist()) if isinstance(key, Iterable): return _query_table(table, [indices.fast_slice(i, 1).column(0)[0].as_py() for i in key]) _raise_bad_key_type(key) def _query_table(table: Table, key: Union[int, slice, range, str, Iterable]) -> pa.Table: """ Query a pyarrow Table to extract the subtable that correspond to the given key. """ if isinstance(key, int): return table.fast_slice(key % table.num_rows, 1) if isinstance(key, slice): key = range(*key.indices(table.num_rows)) if isinstance(key, range): if _is_range_contiguous(key) and key.start >= 0: return table.fast_slice(key.start, key.stop - key.start) else: pass # treat as an iterable if isinstance(key, str): return table.table.drop([column for column in table.column_names if column != key]) if isinstance(key, Iterable): key = np.fromiter(key, np.int64) if len(key) == 0: return table.table.slice(0, 0) # don't use pyarrow.Table.take even for pyarrow >=1.0 (see https://issues.apache.org/jira/browse/ARROW-9773) return table.fast_gather(key % table.num_rows) _raise_bad_key_type(key) def _is_array_with_nulls(pa_array: pa.Array) -> bool: return pa_array.null_count > 0 class BaseArrowExtractor(Generic[RowFormat, ColumnFormat, BatchFormat]): """ Arrow extractor are used to extract data from pyarrow tables. It makes it possible to extract rows, columns and batches. These three extractions types have to be implemented. """ def extract_row(self, pa_table: pa.Table) -> RowFormat: raise NotImplementedError def extract_column(self, pa_table: pa.Table) -> ColumnFormat: raise NotImplementedError def extract_batch(self, pa_table: pa.Table) -> BatchFormat: raise NotImplementedError def _unnest(py_dict: dict[str, list[T]]) -> dict[str, T]: """Return the first element of a batch (dict) as a row (dict)""" return {key: array[0] for key, array in py_dict.items()} class SimpleArrowExtractor(BaseArrowExtractor[pa.Table, pa.Array, pa.Table]): def extract_row(self, pa_table: pa.Table) -> pa.Table: return pa_table def extract_column(self, pa_table: pa.Table) -> pa.Array: return pa_table.column(0) def extract_batch(self, pa_table: pa.Table) -> pa.Table: return pa_table class PythonArrowExtractor(BaseArrowExtractor[dict, list, dict]): def extract_row(self, pa_table: pa.Table) -> dict: return _unnest(pa_table.to_pydict()) def extract_column(self, pa_table: pa.Table) -> list: return pa_table.column(0).to_pylist() def extract_batch(self, pa_table: pa.Table) -> dict: return pa_table.to_pydict() class NumpyArrowExtractor(BaseArrowExtractor[dict, np.ndarray, dict]): def __init__(self, **np_array_kwargs): self.np_array_kwargs = np_array_kwargs def extract_row(self, pa_table: pa.Table) -> dict: return _unnest(self.extract_batch(pa_table)) def extract_column(self, pa_table: pa.Table) -> np.ndarray: return self._arrow_array_to_numpy(pa_table[pa_table.column_names[0]]) def extract_batch(self, pa_table: pa.Table) -> dict: return {col: self._arrow_array_to_numpy(pa_table[col]) for col in pa_table.column_names} def _arrow_array_to_numpy(self, pa_array: pa.Array) -> np.ndarray: if isinstance(pa_array, pa.ChunkedArray): if isinstance(pa_array.type, _ArrayXDExtensionType): # don't call to_pylist() to preserve dtype of the fixed-size array zero_copy_only = _is_zero_copy_only(pa_array.type.storage_dtype, unnest=True) array: list = [ row for chunk in pa_array.chunks for row in chunk.to_numpy(zero_copy_only=zero_copy_only) ] else: zero_copy_only = _is_zero_copy_only(pa_array.type) and all( not _is_array_with_nulls(chunk) for chunk in pa_array.chunks ) array: list = [ row for chunk in pa_array.chunks for row in chunk.to_numpy(zero_copy_only=zero_copy_only) ] else: if isinstance(pa_array.type, _ArrayXDExtensionType): # don't call to_pylist() to preserve dtype of the fixed-size array zero_copy_only = _is_zero_copy_only(pa_array.type.storage_dtype, unnest=True) array: list = pa_array.to_numpy(zero_copy_only=zero_copy_only) else: zero_copy_only = _is_zero_copy_only(pa_array.type) and not _is_array_with_nulls(pa_array) array: list = pa_array.to_numpy(zero_copy_only=zero_copy_only).tolist() if len(array) > 0: if any( (isinstance(x, np.ndarray) and (x.dtype == object or x.shape != array[0].shape)) or (isinstance(x, float) and np.isnan(x)) for x in array ): if np.lib.NumpyVersion(np.__version__) >= "2.0.0b1": return np.asarray(array, dtype=object) return np.array(array, copy=False, dtype=object) if np.lib.NumpyVersion(np.__version__) >= "2.0.0b1": return np.asarray(array) else: return np.array(array, copy=False) class PandasArrowExtractor(BaseArrowExtractor[pd.DataFrame, pd.Series, pd.DataFrame]): def extract_row(self, pa_table: pa.Table) -> pd.DataFrame: return pa_table.slice(length=1).to_pandas(types_mapper=pandas_types_mapper) def extract_column(self, pa_table: pa.Table) -> pd.Series: return pa_table.select([0]).to_pandas(types_mapper=pandas_types_mapper)[pa_table.column_names[0]] def extract_batch(self, pa_table: pa.Table) -> pd.DataFrame: return pa_table.to_pandas(types_mapper=pandas_types_mapper) class PythonFeaturesDecoder: def __init__( self, features: Optional[Features], token_per_repo_id: Optional[dict[str, Union[str, bool, None]]] = None ): self.features = features self.token_per_repo_id = token_per_repo_id def decode_row(self, row: dict) -> dict: return self.features.decode_example(row, token_per_repo_id=self.token_per_repo_id) if self.features else row def decode_column(self, column: list, column_name: str) -> list: return self.features.decode_column(column, column_name) if self.features else column def decode_batch(self, batch: dict) -> dict: return self.features.decode_batch(batch) if self.features else batch class PandasFeaturesDecoder: def __init__(self, features: Optional[Features]): self.features = features def decode_row(self, row: pd.DataFrame) -> pd.DataFrame: decode = ( { column_name: no_op_if_value_is_null(partial(decode_nested_example, feature)) for column_name, feature in self.features.items() if self.features._column_requires_decoding[column_name] } if self.features else {} ) if decode: row[list(decode.keys())] = row.transform(decode) return row def decode_column(self, column: pd.Series, column_name: str) -> pd.Series: decode = ( no_op_if_value_is_null(partial(decode_nested_example, self.features[column_name])) if self.features and column_name in self.features and self.features._column_requires_decoding[column_name] else None ) if decode: column = column.transform(decode) return column def decode_batch(self, batch: pd.DataFrame) -> pd.DataFrame: return self.decode_row(batch) class LazyDict(MutableMapping): """A dictionary backed by Arrow data. The values are formatted on-the-fly when accessing the dictionary.""" def __init__(self, pa_table: pa.Table, formatter: "Formatter"): self.pa_table = pa_table self.formatter = formatter self.data = dict.fromkeys(pa_table.column_names) self.keys_to_format = set(self.data.keys()) def __len__(self): return len(self.data) def __getitem__(self, key): value = self.data[key] if key in self.keys_to_format: value = self.format(key) self.data[key] = value self.keys_to_format.remove(key) return value def __setitem__(self, key, value): if key in self.keys_to_format: self.keys_to_format.remove(key) self.data[key] = value def __delitem__(self, key) -> None: if key in self.keys_to_format: self.keys_to_format.remove(key) del self.data[key] def __iter__(self): return iter(self.data) def __contains__(self, key): return key in self.data def __repr__(self): self._format_all() return repr(self.data) def __or__(self, other): if isinstance(other, LazyDict): inst = self.copy() other = other.copy() other._format_all() inst.keys_to_format -= other.data.keys() inst.data = inst.data | other.data return inst if isinstance(other, dict): inst = self.copy() inst.keys_to_format -= other.keys() inst.data = inst.data | other return inst return NotImplemented def __ror__(self, other): if isinstance(other, LazyDict): inst = self.copy() other = other.copy() other._format_all() inst.keys_to_format -= other.data.keys() inst.data = other.data | inst.data return inst if isinstance(other, dict): inst = self.copy() inst.keys_to_format -= other.keys() inst.data = other | inst.data return inst return NotImplemented def __ior__(self, other): if isinstance(other, LazyDict): other = other.copy() other._format_all() self.keys_to_format -= other.data.keys() self.data |= other.data else: self.keys_to_format -= other.keys() self.data |= other return self def __copy__(self): # Identical to `UserDict.__copy__` inst = self.__class__.__new__(self.__class__) inst.__dict__.update(self.__dict__) # Create a copy and avoid triggering descriptors inst.__dict__["data"] = self.__dict__["data"].copy() inst.__dict__["keys_to_format"] = self.__dict__["keys_to_format"].copy() return inst def copy(self): import copy return copy.copy(self) @classmethod def fromkeys(cls, iterable, value=None): raise NotImplementedError def format(self, key): raise NotImplementedError def _format_all(self): for key in self.keys_to_format: self.data[key] = self.format(key) self.keys_to_format.clear() class LazyRow(LazyDict): def format(self, key): return self.formatter.format_column(self.pa_table.select([key]))[0] class LazyBatch(LazyDict): def format(self, key): return self.formatter.format_column(self.pa_table.select([key])) class Formatter(Generic[RowFormat, ColumnFormat, BatchFormat]): """ A formatter is an object that extracts and formats data from pyarrow tables. It defines the formatting for rows, columns and batches. """ simple_arrow_extractor = SimpleArrowExtractor python_arrow_extractor = PythonArrowExtractor numpy_arrow_extractor = NumpyArrowExtractor pandas_arrow_extractor = PandasArrowExtractor def __init__( self, features: Optional[Features] = None, token_per_repo_id: Optional[dict[str, Union[str, bool, None]]] = None, ): self.features = features self.token_per_repo_id = token_per_repo_id self.python_features_decoder = PythonFeaturesDecoder(self.features, self.token_per_repo_id) self.pandas_features_decoder = PandasFeaturesDecoder(self.features) def __call__(self, pa_table: pa.Table, query_type: str) -> Union[RowFormat, ColumnFormat, BatchFormat]: if query_type == "row": return self.format_row(pa_table) elif query_type == "column": return self.format_column(pa_table) elif query_type == "batch": return self.format_batch(pa_table) def format_row(self, pa_table: pa.Table) -> RowFormat: raise NotImplementedError def format_column(self, pa_table: pa.Table) -> ColumnFormat: raise NotImplementedError def format_batch(self, pa_table: pa.Table) -> BatchFormat: raise NotImplementedError class TensorFormatter(Formatter[RowFormat, ColumnFormat, BatchFormat]): def recursive_tensorize(self, data_struct: dict): raise NotImplementedError class TableFormatter(Formatter[RowFormat, ColumnFormat, BatchFormat]): table_type: str column_type: str class ArrowFormatter(TableFormatter[pa.Table, pa.Array, pa.Table]): table_type = "arrow table" column_type = "arrow array" def format_row(self, pa_table: pa.Table) -> pa.Table: return self.simple_arrow_extractor().extract_row(pa_table) def format_column(self, pa_table: pa.Table) -> pa.Array: return self.simple_arrow_extractor().extract_column(pa_table) def format_batch(self, pa_table: pa.Table) -> pa.Table: return self.simple_arrow_extractor().extract_batch(pa_table) class PythonFormatter(Formatter[Mapping, list, Mapping]): def __init__(self, features=None, lazy=False, token_per_repo_id=None): super().__init__(features, token_per_repo_id) self.lazy = lazy def format_row(self, pa_table: pa.Table) -> Mapping: if self.lazy: return LazyRow(pa_table, self) row = self.python_arrow_extractor().extract_row(pa_table) row = self.python_features_decoder.decode_row(row) return row def format_column(self, pa_table: pa.Table) -> list: column = self.python_arrow_extractor().extract_column(pa_table) column = self.python_features_decoder.decode_column(column, pa_table.column_names[0]) return column def format_batch(self, pa_table: pa.Table) -> Mapping: if self.lazy: return LazyBatch(pa_table, self) batch = self.python_arrow_extractor().extract_batch(pa_table) batch = self.python_features_decoder.decode_batch(batch) return batch class PandasFormatter(TableFormatter[pd.DataFrame, pd.Series, pd.DataFrame]): table_type = "pandas dataframe" column_type = "pandas series" def format_row(self, pa_table: pa.Table) -> pd.DataFrame: row = self.pandas_arrow_extractor().extract_row(pa_table) row = self.pandas_features_decoder.decode_row(row) return row def format_column(self, pa_table: pa.Table) -> pd.Series: column = self.pandas_arrow_extractor().extract_column(pa_table) column = self.pandas_features_decoder.decode_column(column, pa_table.column_names[0]) return column def format_batch(self, pa_table: pa.Table) -> pd.DataFrame: row = self.pandas_arrow_extractor().extract_batch(pa_table) row = self.pandas_features_decoder.decode_batch(row) return row class CustomFormatter(Formatter[dict, ColumnFormat, dict]): """ A user-defined custom formatter function defined by a ``transform``. The transform must take as input a batch of data extracted for an arrow table using the python extractor, and return a batch. If the output batch is not a dict, then output_all_columns won't work. If the output batch has several fields, then querying a single column won't work since we don't know which field to return. """ def __init__(self, transform: Callable[[dict], dict], features=None, token_per_repo_id=None, **kwargs): super().__init__(features=features, token_per_repo_id=token_per_repo_id) self.transform = transform def format_row(self, pa_table: pa.Table) -> dict: formatted_batch = self.format_batch(pa_table) try: return _unnest(formatted_batch) except Exception as exc: raise TypeError( f"Custom formatting function must return a dict of sequences to be able to pick a row, but got {formatted_batch}" ) from exc def format_column(self, pa_table: pa.Table) -> ColumnFormat: formatted_batch = self.format_batch(pa_table) if hasattr(formatted_batch, "keys"): if len(formatted_batch.keys()) > 1: raise TypeError( "Tried to query a column but the custom formatting function returns too many columns. " f"Only one column was expected but got columns {list(formatted_batch.keys())}." ) else: raise TypeError( f"Custom formatting function must return a dict to be able to pick a row, but got {formatted_batch}" ) try: return formatted_batch[pa_table.column_names[0]] except Exception as exc: raise TypeError( f"Custom formatting function must return a dict to be able to pick a row, but got {formatted_batch}" ) from exc def format_batch(self, pa_table: pa.Table) -> dict: batch = self.python_arrow_extractor().extract_batch(pa_table) batch = self.python_features_decoder.decode_batch(batch) return self.transform(batch) def _check_valid_column_key(key: str, columns: list[str]) -> None: if key not in columns: raise KeyError(f"Column {key} not in the dataset. Current columns in the dataset: {columns}") def _check_valid_index_key(key: Union[int, slice, range, Iterable], size: int) -> None: if isinstance(key, int): if (key < 0 and key + size < 0) or (key >= size): raise IndexError(f"Invalid key: {key} is out of bounds for size {size}") return elif isinstance(key, slice): pass elif isinstance(key, range): if len(key) > 0: _check_valid_index_key(max(key), size=size) _check_valid_index_key(min(key), size=size) elif isinstance(key, Iterable): if len(key) > 0: _check_valid_index_key(int(max(key)), size=size) _check_valid_index_key(int(min(key)), size=size) else: _raise_bad_key_type(key) def key_to_query_type(key: Union[int, slice, range, str, Iterable]) -> str: if isinstance(key, int): return "row" elif isinstance(key, str): return "column" elif isinstance(key, (slice, range, Iterable)): return "batch" _raise_bad_key_type(key) def query_table( table: Table, key: Union[int, slice, range, str, Iterable], indices: Optional[Table] = None, ) -> pa.Table: """ Query a Table to extract the subtable that correspond to the given key. Args: table (``datasets.table.Table``): The input Table to query from key (``Union[int, slice, range, str, Iterable]``): The key can be of different types: - an integer i: the subtable containing only the i-th row - a slice [i:j:k]: the subtable containing the rows that correspond to this slice - a range(i, j, k): the subtable containing the rows that correspond to this range - a string c: the subtable containing all the rows but only the column c - an iterable l: the subtable that is the concatenation of all the i-th rows for all i in the iterable indices (Optional ``datasets.table.Table``): If not None, it is used to re-map the given key to the table rows. The indices table must contain one column named "indices" of type uint64. This is used in case of shuffling or rows selection. Returns: ``pyarrow.Table``: the result of the query on the input table """ # Check if key is valid if not isinstance(key, (int, slice, range, str, Iterable)): try: key = operator.index(key) except TypeError: _raise_bad_key_type(key) if isinstance(key, str): _check_valid_column_key(key, table.column_names) else: size = indices.num_rows if indices is not None else table.num_rows _check_valid_index_key(key, size) # Query the main table if indices is None: pa_subtable = _query_table(table, key) else: pa_subtable = _query_table_with_indices_mapping(table, key, indices=indices) return pa_subtable def format_table( table: Table, key: Union[int, slice, range, str, Iterable], formatter: Formatter, format_columns: Optional[list] = None, output_all_columns=False, ): """ Format a Table depending on the key that was used and a Formatter object. Args: table (``datasets.table.Table``): The input Table to format key (``Union[int, slice, range, str, Iterable]``): Depending on the key that was used, the formatter formats the table as either a row, a column or a batch. formatter (``datasets.formatting.formatting.Formatter``): Any subclass of a Formatter such as PythonFormatter, NumpyFormatter, etc. format_columns (:obj:`List[str]`, optional): if not None, it defines the columns that will be formatted using the given formatter. Other columns are discarded (unless ``output_all_columns`` is True) output_all_columns (:obj:`bool`, defaults to False). If True, the formatted output is completed using the columns that are not in the ``format_columns`` list. For these columns, the PythonFormatter is used. Returns: A row, column or batch formatted object defined by the Formatter: - the PythonFormatter returns a dictionary for a row or a batch, and a list for a column. - the NumpyFormatter returns a dictionary for a row or a batch, and a np.array for a column. - the PandasFormatter returns a pd.DataFrame for a row or a batch, and a pd.Series for a column. - the TorchFormatter returns a dictionary for a row or a batch, and a torch.Tensor for a column. - the TFFormatter returns a dictionary for a row or a batch, and a tf.Tensor for a column. """ if isinstance(table, Table): pa_table = table.table else: pa_table = table query_type = key_to_query_type(key) python_formatter = PythonFormatter(features=formatter.features) if format_columns is None: return formatter(pa_table, query_type=query_type) elif query_type == "column": if key in format_columns: return formatter(pa_table, query_type) else: return python_formatter(pa_table, query_type=query_type) else: pa_table_to_format = pa_table.drop(col for col in pa_table.column_names if col not in format_columns) formatted_output = formatter(pa_table_to_format, query_type=query_type) if output_all_columns: if isinstance(formatted_output, MutableMapping): pa_table_with_remaining_columns = pa_table.drop( col for col in pa_table.column_names if col in format_columns ) remaining_columns_dict = python_formatter(pa_table_with_remaining_columns, query_type=query_type) formatted_output.update(remaining_columns_dict) else: raise TypeError( f"Custom formatting function must return a dict to work with output_all_columns=True, but got {formatted_output}" ) return formatted_output