import inspect import os import random import shutil import tempfile import weakref from functools import wraps from pathlib import Path from typing import TYPE_CHECKING, Any, Callable, Optional, Union import numpy as np import xxhash from . import config from .naming import INVALID_WINDOWS_CHARACTERS_IN_PATH from .utils._dill import dumps from .utils.logging import get_logger if TYPE_CHECKING: from .arrow_dataset import Dataset logger = get_logger(__name__) # Fingerprinting allows to have one deterministic fingerprint per dataset state. # A dataset fingerprint is updated after each transform. # Re-running the same transforms on a dataset in a different session results in the same fingerprint. # This is possible thanks to a custom hashing function that works with most python objects. # Fingerprinting is the main mechanism that enables caching. # The caching mechanism allows to reload an existing cache file if it's already been computed. ################# # Caching ################# _CACHING_ENABLED = True _TEMP_DIR_FOR_TEMP_CACHE_FILES: Optional["_TempCacheDir"] = None _DATASETS_WITH_TABLE_IN_TEMP_DIR: Optional[weakref.WeakSet] = None class _TempCacheDir: """ A temporary directory for storing cached Arrow files with a cleanup that frees references to the Arrow files before deleting the directory itself to avoid permission errors on Windows. """ def __init__(self): self.name = tempfile.mkdtemp(prefix=config.TEMP_CACHE_DIR_PREFIX) self._finalizer = weakref.finalize(self, self._cleanup) def _cleanup(self): for dset in get_datasets_with_cache_file_in_temp_dir(): dset.__del__() if os.path.exists(self.name): try: shutil.rmtree(self.name) except Exception as e: raise OSError( f"An error occured while trying to delete temporary cache directory {self.name}. Please delete it manually." ) from e def cleanup(self): if self._finalizer.detach(): self._cleanup() def maybe_register_dataset_for_temp_dir_deletion(dataset): """ This function registers the datasets that have cache files in _TEMP_DIR_FOR_TEMP_CACHE_FILES in order to properly delete them before deleting the temporary directory. The temporary directory _TEMP_DIR_FOR_TEMP_CACHE_FILES is used when caching is disabled. """ if _TEMP_DIR_FOR_TEMP_CACHE_FILES is None: return global _DATASETS_WITH_TABLE_IN_TEMP_DIR if _DATASETS_WITH_TABLE_IN_TEMP_DIR is None: _DATASETS_WITH_TABLE_IN_TEMP_DIR = weakref.WeakSet() if any( Path(_TEMP_DIR_FOR_TEMP_CACHE_FILES.name) in Path(cache_file["filename"]).parents for cache_file in dataset.cache_files ): _DATASETS_WITH_TABLE_IN_TEMP_DIR.add(dataset) def get_datasets_with_cache_file_in_temp_dir(): return list(_DATASETS_WITH_TABLE_IN_TEMP_DIR) if _DATASETS_WITH_TABLE_IN_TEMP_DIR is not None else [] def enable_caching(): """ When applying transforms on a dataset, the data are stored in cache files. The caching mechanism allows to reload an existing cache file if it's already been computed. Reloading a dataset is possible since the cache files are named using the dataset fingerprint, which is updated after each transform. If disabled, the library will no longer reload cached datasets files when applying transforms to the datasets. More precisely, if the caching is disabled: - cache files are always recreated - cache files are written to a temporary directory that is deleted when session closes - cache files are named using a random hash instead of the dataset fingerprint - use [`~datasets.Dataset.save_to_disk`] to save a transformed dataset or it will be deleted when session closes - caching doesn't affect [`~datasets.load_dataset`]. If you want to regenerate a dataset from scratch you should use the `download_mode` parameter in [`~datasets.load_dataset`]. """ global _CACHING_ENABLED _CACHING_ENABLED = True def disable_caching(): """ When applying transforms on a dataset, the data are stored in cache files. The caching mechanism allows to reload an existing cache file if it's already been computed. Reloading a dataset is possible since the cache files are named using the dataset fingerprint, which is updated after each transform. If disabled, the library will no longer reload cached datasets files when applying transforms to the datasets. More precisely, if the caching is disabled: - cache files are always recreated - cache files are written to a temporary directory that is deleted when session closes - cache files are named using a random hash instead of the dataset fingerprint - use [`~datasets.Dataset.save_to_disk`] to save a transformed dataset or it will be deleted when session closes - caching doesn't affect [`~datasets.load_dataset`]. If you want to regenerate a dataset from scratch you should use the `download_mode` parameter in [`~datasets.load_dataset`]. """ global _CACHING_ENABLED _CACHING_ENABLED = False def is_caching_enabled() -> bool: """ When applying transforms on a dataset, the data are stored in cache files. The caching mechanism allows to reload an existing cache file if it's already been computed. Reloading a dataset is possible since the cache files are named using the dataset fingerprint, which is updated after each transform. If disabled, the library will no longer reload cached datasets files when applying transforms to the datasets. More precisely, if the caching is disabled: - cache files are always recreated - cache files are written to a temporary directory that is deleted when session closes - cache files are named using a random hash instead of the dataset fingerprint - use [`~datasets.Dataset.save_to_disk`]] to save a transformed dataset or it will be deleted when session closes - caching doesn't affect [`~datasets.load_dataset`]. If you want to regenerate a dataset from scratch you should use the `download_mode` parameter in [`~datasets.load_dataset`]. """ global _CACHING_ENABLED return bool(_CACHING_ENABLED) def get_temporary_cache_files_directory() -> str: """Return a directory that is deleted when session closes.""" global _TEMP_DIR_FOR_TEMP_CACHE_FILES if _TEMP_DIR_FOR_TEMP_CACHE_FILES is None: _TEMP_DIR_FOR_TEMP_CACHE_FILES = _TempCacheDir() return _TEMP_DIR_FOR_TEMP_CACHE_FILES.name ################# # Hashing ################# class Hasher: """Hasher that accepts python objects as inputs.""" dispatch: dict = {} def __init__(self): self.m = xxhash.xxh64() @classmethod def hash_bytes(cls, value: Union[bytes, list[bytes]]) -> str: value = [value] if isinstance(value, bytes) else value m = xxhash.xxh64() for x in value: m.update(x) return m.hexdigest() @classmethod def hash(cls, value: Any) -> str: return cls.hash_bytes(dumps(value)) def update(self, value: Any) -> None: header_for_update = f"=={type(value)}==" value_for_update = self.hash(value) self.m.update(header_for_update.encode("utf8")) self.m.update(value_for_update.encode("utf-8")) def hexdigest(self) -> str: return self.m.hexdigest() ################# # Fingerprinting ################# fingerprint_rng = random.Random() # we show a warning only once when fingerprinting fails to avoid spam fingerprint_warnings: dict[str, bool] = {} def generate_fingerprint(dataset: "Dataset") -> str: state = dataset.__dict__ hasher = Hasher() for key in sorted(state): if key == "_fingerprint": continue hasher.update(key) hasher.update(state[key]) # hash data files last modification timestamps as well for cache_file in dataset.cache_files: hasher.update(os.path.getmtime(cache_file["filename"])) return hasher.hexdigest() def generate_random_fingerprint(nbits: int = 64) -> str: return f"{fingerprint_rng.getrandbits(nbits):0{nbits // 4}x}" def update_fingerprint(fingerprint, transform, transform_args): global fingerprint_warnings hasher = Hasher() hasher.update(fingerprint) try: hasher.update(transform) except: # noqa various errors might raise here from pickle or dill if _CACHING_ENABLED: if not fingerprint_warnings.get("update_fingerprint_transform_hash_failed", False): logger.warning( f"Transform {transform} couldn't be hashed properly, a random hash was used instead. " "Make sure your transforms and parameters are serializable with pickle or dill for the dataset fingerprinting and caching to work. " "If you reuse this transform, the caching mechanism will consider it to be different from the previous calls and recompute everything. " "This warning is only showed once. Subsequent hashing failures won't be showed." ) fingerprint_warnings["update_fingerprint_transform_hash_failed"] = True else: logger.info(f"Transform {transform} couldn't be hashed properly, a random hash was used instead.") else: logger.info( f"Transform {transform} couldn't be hashed properly, a random hash was used instead. This doesn't affect caching since it's disabled." ) return generate_random_fingerprint() for key in sorted(transform_args): hasher.update(key) try: hasher.update(transform_args[key]) except: # noqa various errors might raise here from pickle or dill if _CACHING_ENABLED: if not fingerprint_warnings.get("update_fingerprint_transform_hash_failed", False): logger.warning( f"Parameter '{key}'={transform_args[key]} of the transform {transform} couldn't be hashed properly, a random hash was used instead. " "Make sure your transforms and parameters are serializable with pickle or dill for the dataset fingerprinting and caching to work. " "If you reuse this transform, the caching mechanism will consider it to be different from the previous calls and recompute everything. " "This warning is only showed once. Subsequent hashing failures won't be showed." ) fingerprint_warnings["update_fingerprint_transform_hash_failed"] = True else: logger.info( f"Parameter '{key}'={transform_args[key]} of the transform {transform} couldn't be hashed properly, a random hash was used instead." ) else: logger.info( f"Parameter '{key}'={transform_args[key]} of the transform {transform} couldn't be hashed properly, a random hash was used instead. This doesn't affect caching since it's disabled." ) return generate_random_fingerprint() return hasher.hexdigest() def validate_fingerprint(fingerprint: str, max_length=64): """ Make sure the fingerprint is a non-empty string that is not longer that max_length=64 by default, so that the fingerprint can be used to name cache files without issues. """ if not isinstance(fingerprint, str) or not fingerprint: raise ValueError(f"Invalid fingerprint '{fingerprint}': it should be a non-empty string.") for invalid_char in INVALID_WINDOWS_CHARACTERS_IN_PATH: if invalid_char in fingerprint: raise ValueError( f"Invalid fingerprint. Bad characters from black list '{INVALID_WINDOWS_CHARACTERS_IN_PATH}' found in '{fingerprint}'. " f"They could create issues when creating cache files." ) if len(fingerprint) > max_length: raise ValueError( f"Invalid fingerprint. Maximum lenth is {max_length} but '{fingerprint}' has length {len(fingerprint)}." "It could create issues when creating cache files." ) def format_transform_for_fingerprint(func: Callable, version: Optional[str] = None) -> str: """ Format a transform to the format that will be used to update the fingerprint. """ transform = f"{func.__module__}.{func.__qualname__}" if version is not None: transform += f"@{version}" return transform def format_kwargs_for_fingerprint( func: Callable, args: tuple, kwargs: dict[str, Any], use_kwargs: Optional[list[str]] = None, ignore_kwargs: Optional[list[str]] = None, randomized_function: bool = False, ) -> dict[str, Any]: """ Format the kwargs of a transform to the format that will be used to update the fingerprint. """ kwargs_for_fingerprint = kwargs.copy() if args: params = [p.name for p in inspect.signature(func).parameters.values() if p != p.VAR_KEYWORD] args = args[1:] # assume the first argument is the dataset params = params[1:] kwargs_for_fingerprint.update(zip(params, args)) else: del kwargs_for_fingerprint[ next(iter(inspect.signature(func).parameters)) ] # assume the first key is the dataset # keep the right kwargs to be hashed to generate the fingerprint if use_kwargs: kwargs_for_fingerprint = {k: v for k, v in kwargs_for_fingerprint.items() if k in use_kwargs} if ignore_kwargs: kwargs_for_fingerprint = {k: v for k, v in kwargs_for_fingerprint.items() if k not in ignore_kwargs} if randomized_function: # randomized functions have `seed` and `generator` parameters if kwargs_for_fingerprint.get("seed") is None and kwargs_for_fingerprint.get("generator") is None: _, seed, pos, *_ = np.random.get_state() seed = seed[pos] if pos < 624 else seed[0] kwargs_for_fingerprint["generator"] = np.random.default_rng(seed) # remove kwargs that are the default values default_values = { p.name: p.default for p in inspect.signature(func).parameters.values() if p.default != inspect._empty } for default_varname, default_value in default_values.items(): if default_varname in kwargs_for_fingerprint and kwargs_for_fingerprint[default_varname] == default_value: kwargs_for_fingerprint.pop(default_varname) return kwargs_for_fingerprint def fingerprint_transform( inplace: bool, use_kwargs: Optional[list[str]] = None, ignore_kwargs: Optional[list[str]] = None, fingerprint_names: Optional[list[str]] = None, randomized_function: bool = False, version: Optional[str] = None, ): """ Wrapper for dataset transforms to update the dataset fingerprint using ``update_fingerprint`` Args: inplace (:obj:`bool`): If inplace is True, the fingerprint of the dataset is updated inplace. Otherwise, a parameter "new_fingerprint" is passed to the wrapped method that should take care of setting the fingerprint of the returned Dataset. use_kwargs (:obj:`List[str]`, optional): optional white list of argument names to take into account to update the fingerprint to the wrapped method that should take care of setting the fingerprint of the returned Dataset. By default all the arguments are used. ignore_kwargs (:obj:`List[str]`, optional): optional black list of argument names to take into account to update the fingerprint. Note that ignore_kwargs prevails on use_kwargs. fingerprint_names (:obj:`List[str]`, optional, defaults to ["new_fingerprint"]): If the dataset transforms is not inplace and returns a DatasetDict, then it can require several fingerprints (one per dataset in the DatasetDict). By specifying fingerprint_names, one fingerprint named after each element of fingerprint_names is going to be passed. randomized_function (:obj:`bool`, defaults to False): If the dataset transform is random and has optional parameters "seed" and "generator", then you can set randomized_function to True. This way, even if users set "seed" and "generator" to None, then the fingerprint is going to be randomly generated depending on numpy's current state. In this case, the generator is set to np.random.default_rng(np.random.get_state()[1][0]). version (:obj:`str`, optional): version of the transform. The version is taken into account when computing the fingerprint. If a datase transform changes (or at least if the output data that are cached changes), then one should increase the version. If the version stays the same, then old cached data could be reused that are not compatible with the new transform. It should be in the format "MAJOR.MINOR.PATCH". """ if use_kwargs is not None and not isinstance(use_kwargs, list): raise ValueError(f"use_kwargs is supposed to be a list, not {type(use_kwargs)}") if ignore_kwargs is not None and not isinstance(ignore_kwargs, list): raise ValueError(f"ignore_kwargs is supposed to be a list, not {type(use_kwargs)}") if inplace and fingerprint_names: raise ValueError("fingerprint_names are only used when inplace is False") fingerprint_names = fingerprint_names if fingerprint_names is not None else ["new_fingerprint"] def _fingerprint(func): if not inplace and not all(name in func.__code__.co_varnames for name in fingerprint_names): raise ValueError(f"function {func} is missing parameters {fingerprint_names} in signature") if randomized_function: # randomized function have seed and generator parameters if "seed" not in func.__code__.co_varnames: raise ValueError(f"'seed' must be in {func}'s signature") if "generator" not in func.__code__.co_varnames: raise ValueError(f"'generator' must be in {func}'s signature") # this call has to be outside the wrapper or since __qualname__ changes in multiprocessing transform = format_transform_for_fingerprint(func, version=version) @wraps(func) def wrapper(*args, **kwargs): kwargs_for_fingerprint = format_kwargs_for_fingerprint( func, args, kwargs, use_kwargs=use_kwargs, ignore_kwargs=ignore_kwargs, randomized_function=randomized_function, ) if args: dataset: Dataset = args[0] args = args[1:] else: dataset: Dataset = kwargs.pop(next(iter(inspect.signature(func).parameters))) # compute new_fingerprint and add it to the args of not in-place transforms if inplace: new_fingerprint = update_fingerprint(dataset._fingerprint, transform, kwargs_for_fingerprint) else: for fingerprint_name in fingerprint_names: # transforms like `train_test_split` have several hashes if kwargs.get(fingerprint_name) is None: kwargs_for_fingerprint["fingerprint_name"] = fingerprint_name kwargs[fingerprint_name] = update_fingerprint( dataset._fingerprint, transform, kwargs_for_fingerprint ) else: validate_fingerprint(kwargs[fingerprint_name]) # Call actual function out = func(dataset, *args, **kwargs) # Update fingerprint of in-place transforms + update in-place history of transforms if inplace: # update after calling func so that the fingerprint doesn't change if the function fails dataset._fingerprint = new_fingerprint return out wrapper._decorator_name_ = "fingerprint" return wrapper return _fingerprint