# Copyright 2020-2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Full training: python examples/scripts/reward_modeling.py \ --model_name_or_path Qwen/Qwen2-0.5B-Instruct \ --dataset_name trl-lib/ultrafeedback_binarized \ --output_dir Qwen2-0.5B-Reward \ --per_device_train_batch_size 8 \ --num_train_epochs 1 \ --gradient_checkpointing True \ --learning_rate 1.0e-5 \ --logging_steps 25 \ --eval_strategy steps \ --eval_steps 50 \ --max_length 2048 LoRA: python examples/scripts/reward_modeling.py \ --model_name_or_path Qwen/Qwen2-0.5B-Instruct \ --dataset_name trl-lib/ultrafeedback_binarized \ --output_dir Qwen2-0.5B-Reward-LoRA \ --per_device_train_batch_size 8 \ --num_train_epochs 1 \ --gradient_checkpointing True \ --learning_rate 1.0e-4 \ --logging_steps 25 \ --eval_strategy steps \ --eval_steps 50 \ --max_length 2048 \ --use_peft \ --lora_r 32 \ --lora_alpha 16 """ import warnings import torch from datasets import load_dataset from transformers import AutoModelForSequenceClassification, AutoTokenizer, HfArgumentParser from trl import ( ModelConfig, RewardConfig, RewardTrainer, ScriptArguments, get_kbit_device_map, get_peft_config, get_quantization_config, setup_chat_format, ) if __name__ == "__main__": parser = HfArgumentParser((ScriptArguments, RewardConfig, ModelConfig)) script_args, training_args, model_args = parser.parse_args_into_dataclasses() training_args.gradient_checkpointing_kwargs = dict(use_reentrant=False) ################ # Model & Tokenizer ################ torch_dtype = ( model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype) ) quantization_config = get_quantization_config(model_args) model_kwargs = dict( revision=model_args.model_revision, device_map=get_kbit_device_map() if quantization_config is not None else None, quantization_config=quantization_config, use_cache=False if training_args.gradient_checkpointing else True, torch_dtype=torch_dtype, ) tokenizer = AutoTokenizer.from_pretrained( model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code, use_fast=True ) model = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path, num_labels=1, trust_remote_code=model_args.trust_remote_code, **model_kwargs ) # Align padding tokens between tokenizer and model model.config.pad_token_id = tokenizer.pad_token_id # If post-training a base model, use ChatML as the default template if tokenizer.chat_template is None: model, tokenizer = setup_chat_format(model, tokenizer) if model_args.use_peft and model_args.lora_task_type != "SEQ_CLS": warnings.warn( "You are using a `task_type` that is different than `SEQ_CLS` for PEFT. This will lead to silent bugs" " Make sure to pass --lora_task_type SEQ_CLS when using this script with PEFT.", UserWarning, ) ############## # Load dataset ############## dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config) ########## # Training ########## trainer = RewardTrainer( model=model, processing_class=tokenizer, args=training_args, train_dataset=dataset[script_args.dataset_train_split], eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None, peft_config=get_peft_config(model_args), ) trainer.train() ############################ # Save model and push to Hub ############################ trainer.save_model(training_args.output_dir) if training_args.eval_strategy != "no": metrics = trainer.evaluate() trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) # Save and push to hub trainer.save_model(training_args.output_dir) if training_args.push_to_hub: trainer.push_to_hub(dataset_name=script_args.dataset_name)