# Copyright 2020-2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from collections import defaultdict, deque from collections.abc import Sequence from itertools import takewhile from typing import Any, Callable, Optional, TypeVar, Union import numpy as np import pyarrow as pa import pyarrow.compute as pc import pyarrow.types from datasets import Dataset, DatasetDict from transformers import PreTrainedTokenizerBase DatasetType = TypeVar("DatasetType", Dataset, DatasetDict) def is_conversational(example: dict[str, Any]) -> bool: r""" Check if the example is in a conversational format. Args: example (`dict[str, Any]`): A single data entry of a dataset. The example can have different keys depending on the dataset type. Returns: `bool`: `True` if the data is in a conversational format, `False` otherwise. Examples: ```python >>> example = {"prompt": [{"role": "user", "content": "What color is the sky?"}]} >>> is_conversational(example) True >>> example = {"prompt": "The sky is"}) >>> is_conversational(example) False ``` """ supported_keys = ["prompt", "chosen", "rejected", "completion", "messages"] example_keys = {key for key in example.keys() if key in supported_keys} # It must have one of the supported keys if example_keys: key = example_keys.pop() # take the first supported key maybe_messages = example[key] # It must be a list of messages, if isinstance(maybe_messages, list): maybe_message = maybe_messages[0] # Each message must a list of dictionaries with keys "role" and "content" if isinstance(maybe_message, dict) and "role" in maybe_message and "content" in maybe_message: return True return False def apply_chat_template( example: dict[str, list[dict[str, str]]], tokenizer: PreTrainedTokenizerBase, tools: Optional[list[Union[dict, Callable]]] = None, ) -> dict[str, str]: r""" Apply a chat template to a conversational example along with the schema for a list of functions in `tools`. For more details, see [`maybe_apply_chat_template`]. """ # Check that the example has the correct keys supported_keys = ["prompt", "chosen", "rejected", "completion", "messages", "label"] example_keys = {key for key in example.keys() if key in supported_keys} if example_keys not in [ {"messages"}, # language modeling {"prompt"}, # prompt-only {"prompt", "completion"}, # prompt-completion {"prompt", "chosen", "rejected"}, # preference {"chosen", "rejected"}, # preference with implicit prompt {"prompt", "completion", "label"}, # unpaired preference ]: raise KeyError(f"Invalid keys in the example: {example_keys}") # Apply the chat template to the whole conversation if "messages" in example: messages = tokenizer.apply_chat_template(example["messages"], tools=tools, tokenize=False) # Apply the chat template to the prompt, adding the generation prompt if "prompt" in example: last_role = example["prompt"][-1]["role"] if last_role == "user": add_generation_prompt = True continue_final_message = False elif last_role == "assistant": add_generation_prompt = False continue_final_message = True else: raise ValueError(f"Invalid role in the last message: {last_role}") prompt = tokenizer.apply_chat_template( example["prompt"], tools=tools, continue_final_message=continue_final_message, tokenize=False, add_generation_prompt=add_generation_prompt, ) # Apply the chat template to the entire prompt + completion if "prompt" in example: # explicit prompt and prompt-completion case if "chosen" in example: prompt_chosen = tokenizer.apply_chat_template( example["prompt"] + example["chosen"], tools=tools, tokenize=False ) # DeepSeek-R1 inserts a token when using `add_generation_prompt`, which can cause discrepancies # between the prompt alone and the combined prompt+completion. To ensure consistency, we extract the # common prefix between the two. In most cases, this is a no-op. prompt = "".join(x for x, _ in takewhile(lambda x: x[0] == x[1], zip(prompt, prompt_chosen))) chosen = prompt_chosen[len(prompt) :] if "rejected" in example and "prompt" in example: # explicit prompt prompt_rejected = tokenizer.apply_chat_template( example["prompt"] + example["rejected"], tools=tools, tokenize=False ) # Handle DeepSeek-R1 token, see the above comment for details prompt = "".join(x for x, _ in takewhile(lambda x: x[0] == x[1], zip(prompt, prompt_rejected))) rejected = prompt_rejected[len(prompt) :] if "completion" in example: prompt_completion = tokenizer.apply_chat_template( example["prompt"] + example["completion"], tools=tools, tokenize=False ) # Handle DeepSeek-R1 token, see the above comment for details prompt = "".join(x for x, _ in takewhile(lambda x: x[0] == x[1], zip(prompt, prompt_completion))) completion = prompt_completion[len(prompt) :] else: # implicit prompt case if "chosen" in example: chosen = tokenizer.apply_chat_template(example["chosen"], tools=tools, tokenize=False) if "rejected" in example: rejected = tokenizer.apply_chat_template(example["rejected"], tools=tools, tokenize=False) # Extract the completion by removing the prompt part from the prompt-completion string output = {} if "messages" in example: output["text"] = messages if "prompt" in example: output["prompt"] = prompt if "chosen" in example: output["chosen"] = chosen if "rejected" in example: output["rejected"] = rejected if "completion" in example: output["completion"] = completion if "label" in example: output["label"] = example["label"] return output def maybe_apply_chat_template( example: dict[str, list[dict[str, str]]], tokenizer: PreTrainedTokenizerBase, tools: Optional[list[Union[dict, Callable]]] = None, ) -> dict[str, str]: r""" If the example is in a conversational format, apply a chat template to it. Args: example (`dict[str, list[dict[str, str]]`): Dictionary representing a single data entry of a conversational dataset. Each data entry can have different keys depending on the dataset type. The supported dataset types are: - Language modeling dataset: `"messages"`. - Prompt-only dataset: `"prompt"`. - Prompt-completion dataset: `"prompt"` and `"completion"`. - Preference dataset: `"prompt"`, `"chosen"`, and `"rejected"`. - Preference dataset with implicit prompt: `"chosen"` and `"rejected"`. - Unpaired preference dataset: `"prompt"`, `"completion"`, and `"label"`. For keys `"messages"`, `"prompt"`, `"chosen"`, `"rejected"`, and `"completion"`, the values are lists of messages, where each message is a dictionary with keys `"role"` and `"content"`. tokenizer (`PreTrainedTokenizerBase`): Tokenizer to apply the chat template with. tools (`list[Union[dict, Callable]]` or `None`, *optional*, defaults to `None`): A list of tools (callable functions) that will be accessible to the model. If the template does not support function calling, this argument will have no effect Returns: `dict[str, str]`: Formatted example with the chat template applied. Notes: - This function does not alter the keys, except for Language modeling dataset, where `"messages"` is replaced by `"text"`. - In case of prompt-only data, if the last role is `"user"`, the generation prompt is added to the prompt. Else, if the last role is `"assistant"`, the final message is continued. Example: ```python >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-128k-instruct") >>> example = { ... "prompt": [{"role": "user", "content": "What color is the sky?"}], ... "completion": [{"role": "assistant", "content": "It is blue."}] ... } >>> apply_chat_template(example, tokenizer) {'prompt': '<|user|>\nWhat color is the sky?<|end|>\n<|assistant|>\n', 'completion': 'It is blue.<|end|>\n<|endoftext|>'} ``` """ if is_conversational(example): return apply_chat_template(example, tokenizer, tools) else: return example def _unpair_row(examples: list[dict[str, list[dict[str, str]]]]) -> list[dict[str, list[dict[str, str]]]]: batch_size = len(examples["chosen"]) new_rows = { "completion": examples["chosen"] + examples["rejected"], "label": [True] * batch_size + [False] * batch_size, } if "prompt" in examples: new_rows["prompt"] = examples["prompt"] + examples["prompt"] return new_rows def unpair_preference_dataset( dataset: DatasetType, num_proc: Optional[int] = None, desc: Optional[str] = None ) -> DatasetType: r""" Unpair a preference dataset. Args: dataset (`Dataset` or `DatasetDict`): Preference dataset to unpair. The dataset must have columns `"chosen"`, `"rejected"` and optionally `"prompt"`. num_proc (`int` or `None`, *optional*, defaults to `None`): Number of processes to use for processing the dataset. desc (`str` or `None`, *optional*, defaults to `None`): Meaningful description to be displayed alongside with the progress bar while mapping examples. Returns: `Dataset`: The unpaired preference dataset. Example: ```python >>> from datasets import Dataset >>> dataset_dict = { ... "prompt": ["The sky is", "The sun is"] ... "chosen": [" blue.", "in the sky."], ... "rejected": [" green.", " in the sea."] ... } >>> dataset = Dataset.from_dict(dataset_dict) >>> dataset = unpair_preference_dataset(dataset) >>> dataset Dataset({ features: ['prompt', 'completion', 'label'], num_rows: 4 }) >>> dataset[0] {'prompt': 'The sky is', 'completion': ' blue.', 'label': True} ``` """ return dataset.map(_unpair_row, batched=True, remove_columns=["chosen", "rejected"], num_proc=num_proc, desc=desc) def maybe_unpair_preference_dataset( dataset: DatasetType, num_proc: Optional[int] = None, desc: Optional[str] = None ) -> DatasetType: r""" Unpair a preference dataset if it is paired. Args: dataset (`Dataset` or `DatasetDict`): Preference dataset to unpair. The dataset must have columns `"chosen"`, `"rejected"` and optionally `"prompt"`. num_proc (`int` or `None`, *optional*, defaults to `None`): Number of processes to use for processing the dataset. desc (`str` or `None`, *optional*, defaults to `None`): Meaningful description to be displayed alongside with the progress bar while mapping examples. Returns: `Dataset` or `DatasetDict`: The unpaired preference dataset if it was paired, otherwise the original dataset. Example: ```python >>> from datasets import Dataset >>> dataset_dict = { ... "prompt": ["The sky is", "The sun is"] ... "chosen": [" blue.", "in the sky."], ... "rejected": [" green.", " in the sea."] ... } >>> dataset = Dataset.from_dict(dataset_dict) >>> dataset = unpair_preference_dataset(dataset) >>> dataset Dataset({ features: ['prompt', 'completion', 'label'], num_rows: 4 }) >>> dataset[0] {'prompt': 'The sky is', 'completion': ' blue.', 'label': True} ``` """ if isinstance(dataset, DatasetDict): column_names = dataset[list(dataset.keys())[0]].column_names else: column_names = dataset.column_names if "chosen" in column_names and "rejected" in column_names: return unpair_preference_dataset(dataset, num_proc=num_proc, desc=desc) else: return dataset def extract_prompt(example: dict[str, Sequence]) -> dict[str, Sequence]: r""" Extracts the shared prompt from a preference data example, where the prompt is implicit within both the chosen and rejected completions. For more details, see [`maybe_extract_prompt`]. """ for idx in range(min(len(example["chosen"]), len(example["rejected"]))): if example["chosen"][idx] != example["rejected"][idx]: if example["chosen"][idx - 1] == " ": # remove space before the prompt idx -= 1 break return { "prompt": example["chosen"][:idx], "chosen": example["chosen"][idx:], "rejected": example["rejected"][idx:], } def maybe_extract_prompt(example: dict[str, list]) -> dict[str, list]: r""" Extracts the shared prompt from a preference data example, where the prompt is implicit within both the chosen and rejected completions. If the example already contains a `"prompt"` key, the function returns the example as is. Else, the function identifies the longest common sequence (prefix) of conversation turns between the "chosen" and "rejected" completions and extracts this as the prompt. It then removes this prompt from the respective "chosen" and "rejected" completions. Args: example (`dict[str, list]`): A dictionary representing a single data entry in the preference dataset. It must contain the keys `"chosen"` and `"rejected"`, where each value is either conversational or standard (`str`). Returns: `dict[str, list]`: A dictionary containing: - `"prompt"`: The longest common prefix between the "chosen" and "rejected" completions. - `"chosen"`: The remainder of the "chosen" completion, with the prompt removed. - `"rejected"`: The remainder of the "rejected" completion, with the prompt removed. Examples: ```python >>> example = { ... "chosen": [ ... {"role": "user", "content": "What color is the sky?"}, ... {"role": "assistant", "content": "It is blue."} ... ], ... "rejected": [ ... {"role": "user", "content": "What color is the sky?"}, ... {"role": "assistant", "content": "It is green."} ... ] ... } >>> extract_prompt(example) {'prompt': [{'role': 'user', 'content': 'What color is the sky?'}], 'chosen': [{'role': 'assistant', 'content': 'It is blue.'}], 'rejected': [{'role': 'assistant', 'content': 'It is green.'}]} ``` Or, with the `map` method of `datasets.Dataset`: ```python >>> from trl import extract_prompt >>> from datasets import Dataset >>> dataset_dict = { ... "chosen": [ ... [ ... {"role": "user", "content": "What color is the sky?"}, ... {"role": "assistant", "content": "It is blue."}, ... ], ... [ ... {"role": "user", "content": "Where is the sun?"}, ... {"role": "assistant", "content": "In the sky."}, ... ], ... ], ... "rejected": [ ... [ ... {"role": "user", "content": "What color is the sky?"}, ... {"role": "assistant", "content": "It is green."}, ... ], ... [ ... {"role": "user", "content": "Where is the sun?"}, ... {"role": "assistant", "content": "In the sea."}, ... ], ... ], ... } >>> dataset = Dataset.from_dict(dataset_dict) >>> dataset = dataset.map(extract_prompt) >>> dataset[0] {'prompt': [{'role': 'user', 'content': 'What color is the sky?'}], 'chosen': [{'role': 'assistant', 'content': 'It is blue.'}], 'rejected': [{'role': 'assistant', 'content': 'It is green.'}]} ``` """ # Some dataset add a `"prompt"` column, even though the prompt is implicit and included in the "chosen" and # "rejected" completions. E.g.: # {"prompt": "What color is the sky?", # "chosen": [{"role": "user", "content": "What color is the sky?"}, {"role": "assistant", "content": "It is blue."}], # "rejected": [{"role": "user", "content": "What color is the sky?"}, {"role": "assistant", "content": "It is green."}]} # That's why we check if the prompt is also conversational before deciding not to extract it. if "chosen" not in example or "rejected" not in example: # not a preference example return example if "prompt" in example: # Both conversational or both non-conversational chosen_conv = is_conversational({"chosen": example["chosen"]}) prompt_conv = is_conversational({"prompt": example["prompt"]}) if (chosen_conv and prompt_conv) or (not chosen_conv and not prompt_conv): return example return extract_prompt({"chosen": example["chosen"], "rejected": example["rejected"]}) def pack_examples(examples: dict[str, list[list]], seq_length: int) -> dict[str, list[list]]: """ Pack examples into chunks of size `seq_length`. Args: examples (`dict[str, list[list]]`): Dictionary of examples with keys as strings and values as lists of lists. seq_length (`int`): Maximum sequence length. Returns: `dict[str, list[list]]`: Dictionary of examples with keys as strings and values as lists of lists. Example: ```python >>> from trl import pack_examples >>> examples = { ... "input_ids": [[1, 2, 3], [4, 5, 6, 7], [8]], ... "attention_mask": [[0, 1, 1], [0, 0, 1, 1], [1]], ... } >>> pack_examples(examples, seq_length=5) {'input_ids': [[1, 2, 3, 4, 5], [6, 7, 8]], 'attention_mask': [[0, 1, 1, 0, 0], [1, 1, 1]]} >>> pack_examples(examples, seq_length=2) {'input_ids': [[1, 2], [3, 4], [5, 6], [7, 8]], 'attention_mask': [[0, 1], [1, 0], [0, 1], [1, 1]]} ``` """ warnings.warn( "`pack_examples` is deprecated and will be removed in version 0.20.0. Use `pack_dataset` with a dataset " "instead.", DeprecationWarning, ) # Join all the values into a single list examples = {k: sum(v, []) for k, v in examples.items()} # Split the values into chunks of size seq_length examples = {k: [v[i : i + seq_length] for i in range(0, len(v), seq_length)] for k, v in examples.items()} return examples class _SegmentTree: """ A segment tree data structure that, when initialized as `_SegmentTree(maxval)`, efficiently finds the next larger value for a given input within the range [1, maxval]. See [Fewer Truncations Improve Language Modeling](https://arxiv.org/abs/2404.10830) for more details. """ def __init__(self, maxval: int): self.maxval = maxval self.tree = [0] * (2 * maxval) def add(self, val): assert 0 < val <= self.maxval i = self.maxval + val - 1 self.tree[i] = val while i > 1: i >>= 1 left, right = self.tree[i << 1], self.tree[(i << 1) + 1] # Compare the values using if-else otherwise repeated calls to `builtins.max` become the bottleneck self.tree[i] = left if left >= right else right def remove(self, val): assert 0 < val <= self.maxval i = self.maxval + val - 1 self.tree[i] = 0 while i > 1: i >>= 1 left, right = self.tree[i << 1], self.tree[(i << 1) + 1] # Compare the values using if-else otherwise repeated calls to `builtins.max` become the bottleneck self.tree[i] = left if left >= right else right def search(self, val): assert 0 < val <= self.maxval i = 1 while i < self.maxval: if self.tree[i << 1] >= val: i = i << 1 else: i = (i << 1) + 1 return self.tree[i] def _pack_ffd(examples: pa.Table, seq_length: int) -> pa.Table: """Pack sequences in a pyarrow Table using First Fit Decreasing strategy.""" # Add position_ids to the examples input_ids = examples["input_ids"] position_ids_python = [list(range(len(sequence))) for sequence in input_ids.to_pylist()] position_ids_array = pa.array(position_ids_python, type=examples["input_ids"].type) examples = examples.append_column("position_ids", position_ids_array) columns = [] list_column_idx = None for idx, column in enumerate(examples.columns): if pyarrow.types.is_list(column.type) or pyarrow.types.is_large_list(column.type): column = pc.list_slice(column, 0, seq_length) if list_column_idx is None: list_column_idx = idx columns.append(column) examples = pa.Table.from_arrays(columns, names=examples.column_names) ids = np.arange(len(examples)) assert list_column_idx is not None lengths = pc.make_struct(pc.list_value_length(examples[list_column_idx]).combine_chunks(), ids) lengths = lengths.sort("descending", by=0) segment_tree = _SegmentTree(seq_length) segment_tree.add(seq_length) # the max, `seq_length` bin is always available space_to_bin = defaultdict(deque) # Bin is represented as a dict (of example ids and sum of their lengths) to allow in-place updates bins: list[dict] = [] for length, idx in zip(lengths.field(0).to_numpy(), lengths.field(1).to_numpy()): space = segment_tree.search(length) if space < seq_length: bin = space_to_bin[space].popleft() else: bin = {"ids": [], "length": 0} bins.append(bin) bin["ids"].append(idx) bin["length"] += length if space < seq_length and not space_to_bin[space]: segment_tree.remove(space) space = space - length space_to_bin[space].append(bin) if space > 0: segment_tree.add(space) examples = pc.take(examples, [id_ for bin in bins for id_ in bin["ids"]]) offsets = np.array([0] + [bin["length"] for bin in bins]) offsets = np.cumsum(offsets) columns = [] for column in examples.columns: assert len(column.chunks) == 1 # `pc.take` returns a ChunkedArray with a single chunk column = column.chunks[0] if pa.types.is_list(column.type) or pa.types.is_large_list(column.type): dtype = column.offsets.type.to_pandas_dtype() column = type(column).from_arrays(offsets.astype(dtype), column.values) columns.append(column) return pa.Table.from_arrays(columns, names=examples.column_names) def _pack_wrapped(examples: pa.Table, seq_length: int) -> pa.Table: """Pack sequences in a pyarrow Table using a wrapped strategy.""" columns = [] for column in examples.columns: if pyarrow.types.is_list(column.type) or pyarrow.types.is_large_list(column.type): if isinstance(column, pa.ChunkedArray): column = column.combine_chunks() offsets, values = column.offsets, column.values values = values[offsets[0].as_py() : offsets[-1].as_py()] num_elements = len(values) dtype = offsets.type.to_pandas_dtype() # np.int32 or np.int64 offsets = np.arange(0, num_elements, seq_length, dtype=dtype) offsets = np.concatenate((offsets, [num_elements])) column = type(column).from_arrays(offsets, values) columns.append(column) return pa.Table.from_arrays(columns, names=examples.column_names) def pack_dataset( dataset: DatasetType, seq_length: int, strategy: str = "ffd", map_kwargs: Optional[dict[str, Any]] = None ) -> DatasetType: r""" Pack sequences in a dataset into chunks of size `seq_length`. Args: dataset (`Dataset` or `DatasetDict`): Dataset to pack seq_length (`int`): Target sequence length to pack to. strategy (`str`, *optional*, defaults to `"ffd"`): Packing strategy to use. Can be either: - `"ffd"` (First Fit Decreasing): Slower but preserves sequence boundaries. Sequences are never cut in the middle. - `"wrapped"`: Faster but more aggressive. Ignores sequence boundaries and will cut sequences in the middle to completely fill each packed sequence with data. map_kwargs (`dict` or `None`, *optional*, defaults to `None`): Additional keyword arguments to pass to the dataset's map method when packing examples. Returns: `Dataset` or `DatasetDict`: The dataset with packed sequences. The number of examples may decrease as sequences are combined. Example: ```python >>> from datasets import Dataset >>> from trl import pack_dataset >>> examples = { ... "input_ids": [[1, 2, 3], [4, 5], [6, 7, 8], [9]], ... "attention_mask": [[1, 1, 0], [1, 0], [1, 0, 0], [1]] ... } >>> dataset = Dataset.from_dict(examples) >>> packed_dataset = pack_dataset(dataset, seq_length=4, strategy="ffd") >>> packed_dataset[:] {'input_ids': [[1, 2, 3, 9], [6, 7, 8, 4, 5]], 'attention_mask': [[1, 1, 0, 1], [1, 0, 0, 1, 0]]} ``` """ if map_kwargs is None: map_kwargs = {} # Fast packing with pyarrow dataset = dataset.with_format("arrow") if strategy == "ffd": dataset = dataset.map(_pack_ffd, batched=True, fn_kwargs={"seq_length": seq_length}, **map_kwargs) elif strategy == "wrapped": dataset = dataset.map(_pack_wrapped, batched=True, fn_kwargs={"seq_length": seq_length}, **map_kwargs) else: raise ValueError(f"Invalid packing strategy: {strategy}. Use 'ffd' or 'wrapped'.") dataset = dataset.with_format(None) return dataset def truncate_dataset( dataset: DatasetType, max_length: int, map_kwargs: Optional[dict[str, Any]] = None ) -> DatasetType: r""" Truncate sequences in a dataset to a specifed `max_length`. Args: dataset (`Dataset` or `DatasetDict`): Dataset to truncate. seq_length (`int`): Maximum sequence length to truncate to. map_kwargs (`dict` or `None`, *optional*, defaults to `None`): Additional keyword arguments to pass to the dataset's map method when truncating examples. Returns: `Dataset` or `DatasetDict`: The dataset with truncated sequences. Example: ```python >>> from datasets import Dataset >>> examples = { ... "input_ids": [[1, 2, 3], [4, 5, 6, 7], [8]], ... "attention_mask": [[0, 1, 1], [0, 0, 1, 1], [1]], ... } >>> dataset = Dataset.from_dict(examples) >>> truncated_dataset = truncate_dataset(dataset, max_length=2) >>> truncated_dataset[:] {'input_ids': [[1, 2], [4, 5], [8]], 'attention_mask': [[0, 1], [0, 0], [1]]} ``` """ if map_kwargs is None: map_kwargs = {} if isinstance(dataset, Dataset): # Fast truncation with pyarrow def truncate(examples): truncated_columns = [] for column in examples.columns: if pyarrow.types.is_list(column.type) or pyarrow.types.is_large_list(column.type): column = pc.list_slice(column, 0, max_length) truncated_columns.append(column) return pa.Table.from_arrays(truncated_columns, names=examples.column_names) dataset = dataset.with_format("arrow") dataset = dataset.map(truncate, batched=True, **map_kwargs) dataset = dataset.with_format(None) else: def truncate(examples): truncated_examples = {} for key, column in examples.items(): if column and isinstance(column[0], list): column = [val[:max_length] for val in column] truncated_examples[key] = column return truncated_examples dataset = dataset.map( truncate, batched=True, **map_kwargs, ) return dataset def maybe_convert_to_chatml(example: dict[str, list]) -> dict[str, list]: """ Convert a conversational dataset with fields `from` and `value` to ChatML format. This function modifies conversational data to align with OpenAI's ChatML format: - Replaces the key `"from"` with `"role"` in message dictionaries. - Replaces the key `"value"` with `"content"` in message dictionaries. - Renames `"conversations"` to `"messages"` for consistency with ChatML. Args: example (`dict[str, list]`): A single data entry containing a list of messages. Returns: `dict[str, list]`: Example reformatted to ChatML style. Example: ```python >>> from trl import maybe_convert_to_chatml >>> example = { ... "conversations": [ ... {"from": "user", "value": "What color is the sky?"}, ... {"from": "assistant", "value": "It is blue."} ... ] ... } >>> maybe_convert_to_chatml(example) {'messages': [{'role': 'user', 'content': 'What color is the sky?'}, {'role': 'assistant', 'content': 'It is blue.'}]} ``` """ # List of possible keys containing message lists for key in ["prompt", "completion", "chosen", "rejected", "messages", "conversations"]: if key in example and isinstance(example[key], list): messages = example[key] for message in messages: if isinstance(message, dict): if "from" in message: message["role"] = message.pop("from") if "value" in message: message["content"] = message.pop("value") # Rename "conversations" to "messages" if "conversations" in example: example["messages"] = example.pop("conversations") return example