# Copyright 2020-2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ pip install pillow # Tested on 8x H100 GPUs accelerate launch --config_file=examples/accelerate_configs/deepspeed_zero3.yaml \ examples/scripts/sft_vlm.py \ --dataset_name HuggingFaceH4/llava-instruct-mix-vsft \ --model_name_or_path llava-hf/llava-1.5-7b-hf \ --per_device_train_batch_size 8 \ --gradient_accumulation_steps 8 \ --output_dir sft-llava-1.5-7b-hf \ --bf16 \ --torch_dtype bfloat16 \ --gradient_checkpointing For LLaVA-NeXT, use: (requires transformers>=4.45) --model_name_or_path llava-hf/llava-v1.6-mistral-7b-hf For meta-llama/Llama-3.2-11B-Vision-Instruct, use: (requires transformers>=4.45.1) --model_name_or_path meta-llama/Llama-3.2-11B-Vision-Instruct """ import torch from datasets import load_dataset from transformers import AutoModelForVision2Seq, AutoProcessor, LlavaForConditionalGeneration from trl import ( ModelConfig, ScriptArguments, SFTConfig, SFTTrainer, TrlParser, get_kbit_device_map, get_peft_config, get_quantization_config, ) if __name__ == "__main__": parser = TrlParser((ScriptArguments, SFTConfig, ModelConfig)) script_args, training_args, model_args = parser.parse_args_and_config() training_args.gradient_checkpointing_kwargs = dict(use_reentrant=False) training_args.remove_unused_columns = False training_args.dataset_kwargs = {"skip_prepare_dataset": True} ################ # Model, Tokenizer & Processor ################ torch_dtype = ( model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype) ) quantization_config = get_quantization_config(model_args) model_kwargs = dict( revision=model_args.model_revision, attn_implementation=model_args.attn_implementation, torch_dtype=torch_dtype, device_map=get_kbit_device_map() if quantization_config is not None else None, quantization_config=quantization_config, ) processor = AutoProcessor.from_pretrained( model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code ) model = AutoModelForVision2Seq.from_pretrained( model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code, **model_kwargs ) ################ # Create a data collator to encode text and image pairs ################ def collate_fn(examples): # Get the texts and images, and apply the chat template texts = [processor.apply_chat_template(example["messages"], tokenize=False) for example in examples] images = [example["images"] for example in examples] if isinstance(model, LlavaForConditionalGeneration): # LLava1.5 does not support multiple images images = [image[0] for image in images] # Tokenize the texts and process the images batch = processor(text=texts, images=images, return_tensors="pt", padding=True) # The labels are the input_ids, and we mask the padding tokens in the loss computation labels = batch["input_ids"].clone() labels[labels == processor.tokenizer.pad_token_id] = -100 # # Ignore the image token index in the loss computation (model specific) image_token_id = processor.tokenizer.convert_tokens_to_ids(processor.image_token) labels[labels == image_token_id] = -100 batch["labels"] = labels return batch ################ # Dataset ################ dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config) ################ # Training ################ trainer = SFTTrainer( model=model, args=training_args, data_collator=collate_fn, train_dataset=dataset[script_args.dataset_train_split], eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None, processing_class=processor.tokenizer, peft_config=get_peft_config(model_args), ) trainer.train() # Save and push to hub trainer.save_model(training_args.output_dir) if training_args.push_to_hub: trainer.push_to_hub(dataset_name=script_args.dataset_name) if trainer.accelerator.is_main_process: processor.push_to_hub(training_args.hub_model_id)