# Copyright 2020-2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Train Gemma-3 on the Codeforces COTS dataset. accelerate launch --config_file examples/accelerate_configs/deepspeed_zero3.yaml examples/scripts/sft_gemma3.py """ from datasets import load_dataset from transformers import AutoModelForImageTextToText from trl import SFTConfig, SFTTrainer def main(): # Load dataset train_dataset = load_dataset("open-r1/codeforces-cots", split="train") train_dataset = train_dataset.remove_columns("prompt") # Load model model_id = "google/gemma-3-12b-it" model = AutoModelForImageTextToText.from_pretrained(model_id, attn_implementation="eager") # Train model training_args = SFTConfig( output_dir=f"{model_id}-codeforces-SFT", logging_steps=10, bf16=True, use_liger_kernel=True, gradient_checkpointing=True, gradient_checkpointing_kwargs={"use_reentrant": False}, max_length=8192, per_device_train_batch_size=1, gradient_accumulation_steps=8, dataset_num_proc=32, num_train_epochs=1, ) trainer = SFTTrainer( args=training_args, model=model, train_dataset=train_dataset, ) trainer.train() # Push to hub trainer.push_to_hub(dataset_name="open-r1/codeforces-cots") if __name__ == "__main__": main()