# Copyright 2020-2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Run the BCO training script with the commands below. In general, the optimal configuration for BCO will be similar to that of KTO. # Full training: python examples/scripts/bco.py \ --model_name_or_path Qwen/Qwen2.5-0.5B-Instruct \ --trust_remote_code \ --dataset_name trl-lib/ultrafeedback-gpt-3.5-turbo-helpfulness \ --per_device_train_batch_size 16 \ --per_device_eval_batch_size 32 \ --num_train_epochs 1 \ --learning_rate 1e-6 \ --gradient_checkpointing \ --gradient_accumulation_steps 1 \ --logging_steps 0.01 \ --eval_steps 0.2 \ --save_strategy no \ --output_dir=bco-aligned-model \ --logging_first_step \ --max_length 2048 \ --max_prompt_length 1536 \ --max_completion_length 1024 \ --no_remove_unused_columns \ --warmup_ratio 0.1 \ --bf16 \ --report_to wandb # QLoRA: python examples/scripts/bco.py \ --model_name_or_path=nnheui/stablelm-2-1_6b-sft-full \ --per_device_train_batch_size 16 \ --per_device_eval_batch_size 32 \ --num_train_epochs 1 \ --learning_rate 1e-6 \ --gradient_checkpointing \ --gradient_accumulation_steps 1 \ --logging_steps 0.01 \ --eval_steps 0.2 \ --save_strategy no \ --output_dir=bco-aligned-model-lora \ --logging_first_step \ --warmup_ratio 0.1 \ --report_to wandb \ --max_length 2048 \ --max_prompt_length 1536 \ --max_completion_length 1024 \ --no_remove_unused_columns \ --warmup_ratio 0.1 \ --bf16 \ --use_peft \ --load_in_4bit \ --lora_target_modules=all-linear \ --lora_r=16 \ --lora_alpha=16 """ from functools import partial import torch import torch.nn.functional as F from accelerate import Accelerator from datasets import load_dataset from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, PreTrainedModel from trl import BCOConfig, BCOTrainer, ModelConfig, ScriptArguments, get_peft_config, setup_chat_format def embed_prompt(input_ids: torch.LongTensor, attention_mask: torch.LongTensor, model: PreTrainedModel): """ Borrowed from https://huggingface.co/nomic-ai/nomic-embed-text-v1.5#transformers """ def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) with torch.no_grad(): model_output = model(input_ids=input_ids, attention_mask=attention_mask) embeddings = mean_pooling(model_output, attention_mask) matryoshka_dim = 512 # normalize embeddings embeddings = F.normalize(embeddings, p=2, dim=1) embeddings = F.layer_norm(embeddings, normalized_shape=(embeddings.shape[1],)) embeddings = embeddings[:, :matryoshka_dim] return embeddings if __name__ == "__main__": parser = HfArgumentParser((ScriptArguments, BCOConfig, ModelConfig)) script_args, training_args, model_args = parser.parse_args_into_dataclasses() training_args.gradient_checkpointing_kwargs = {"use_reentrant": True} # Load a pretrained model model = AutoModelForCausalLM.from_pretrained( model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code ) ref_model = AutoModelForCausalLM.from_pretrained( model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code ) tokenizer = AutoTokenizer.from_pretrained( model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code ) if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token # If we are aligning a base model, we use ChatML as the default template if tokenizer.chat_template is None: model, tokenizer = setup_chat_format(model, tokenizer) dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config) accelerator = Accelerator() embedding_model = AutoModel.from_pretrained( "nomic-ai/nomic-embed-text-v1.5", trust_remote_code=model_args.trust_remote_code, safe_serialization=True, torch_dtype=torch.bfloat16, device_map="auto", ) embedding_model = accelerator.prepare_model(embedding_model) embedding_tokenizer = AutoTokenizer.from_pretrained( "bert-base-uncased", trust_remote_code=model_args.trust_remote_code ) embedding_func = partial( embed_prompt, model=embedding_model, ) # Initialize the BCO trainer trainer = BCOTrainer( model, ref_model, args=training_args, train_dataset=dataset[script_args.dataset_train_split], eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None, processing_class=tokenizer, peft_config=get_peft_config(model_args), embedding_func=embedding_func, embedding_tokenizer=embedding_tokenizer, ) # Train and push the model to the Hub trainer.train() # Save and push to hub trainer.save_model(training_args.output_dir) if training_args.push_to_hub: trainer.push_to_hub(dataset_name=script_args.dataset_name)