# Copyright 2020-2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass, field from typing import Optional from datasets import load_dataset from huggingface_hub import ModelCard from transformers import HfArgumentParser @dataclass class ScriptArguments: r""" Arguments for the script. Args: push_to_hub (`bool`, *optional*, defaults to `False`): Whether to push the dataset to the Hugging Face Hub. repo_id (`str`, *optional*, defaults to `"trl-lib/tldr"`): Hugging Face repository ID to push the dataset to. dataset_num_proc (`int` or `None`, *optional*, defaults to `None`): Number of workers to use for dataset processing. """ push_to_hub: bool = field( default=False, metadata={"help": "Whether to push the dataset to the Hugging Face Hub."}, ) repo_id: str = field( default="trl-lib/tldr", metadata={"help": "Hugging Face repository ID to push the dataset to."}, ) dataset_num_proc: Optional[int] = field( default=None, metadata={"help": "Number of workers to use for dataset processing."}, ) def to_prompt_completion(example): tldr_format_str = "SUBREDDIT: r/{subreddit}\n\nTITLE: {title}\n\nPOST: {post}\n\nTL;DR:" prompt = tldr_format_str.format(subreddit=example["subreddit"], title=example["title"], post=example["post"]) completion = " " + example["summary"] # Add a space to separate the prompt from the completion return {"prompt": prompt, "completion": completion} model_card = ModelCard(""" --- tags: [trl] --- # TL;DR Dataset ## Summary The TL;DR dataset is a processed version of Reddit posts, specifically curated to train models using the [TRL library](https://github.com/huggingface/trl) for summarization tasks. It leverages the common practice on Reddit where users append "TL;DR" (Too Long; Didn't Read) summaries to lengthy posts, providing a rich source of paired text data for training summarization models. ## Data Structure - **Format**: [Standard](https://huggingface.co/docs/trl/main/dataset_formats#standard) - **Type**: [Prompt-completion](https://huggingface.co/docs/trl/main/dataset_formats#prompt-completion) Columns: - `"prompt"`: The unabridged Reddit post. - `"completion"`: The concise "TL;DR" summary appended by the author. This structure enables models to learn the relationship between detailed content and its abbreviated form, enhancing their summarization capabilities. ## Generation script The script used to generate this dataset can be found [here](https://github.com/huggingface/trl/blob/main/examples/datasets/tldr.py). """) if __name__ == "__main__": parser = HfArgumentParser(ScriptArguments) script_args = parser.parse_args_into_dataclasses()[0] # Filtered reddit TL;DR dataset from https://github.com/openai/summarize-from-feedback?tab=readme-ov-file#reddit-tldr-dataset data_files = { "train": "https://openaipublic.blob.core.windows.net/summarize-from-feedback/datasets/tldr_3_filtered/train.jsonl", "validation": "https://openaipublic.blob.core.windows.net/summarize-from-feedback/datasets/tldr_3_filtered/valid.jsonl", "test": "https://openaipublic.blob.core.windows.net/summarize-from-feedback/datasets/tldr_3_filtered/test.jsonl", } dataset = load_dataset("json", data_files=data_files) dataset = dataset.map( to_prompt_completion, num_proc=script_args.dataset_num_proc, remove_columns=["id", "subreddit", "title", "post", "summary"], ) if script_args.push_to_hub: dataset.push_to_hub(script_args.repo_id) model_card.push_to_hub(script_args.repo_id, repo_type="dataset")