trl-sandbox / trl /cli.py
ivangabriele's picture
feat: initialize project
2f5127c verified
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib.resources as resources
import os
import sys
import warnings
from accelerate.commands.launch import launch_command, launch_command_parser
from .scripts.dpo import make_parser as make_dpo_parser
from .scripts.env import print_env
from .scripts.grpo import make_parser as make_grpo_parser
from .scripts.kto import make_parser as make_kto_parser
from .scripts.sft import make_parser as make_sft_parser
from .scripts.utils import TrlParser
from .scripts.vllm_serve import main as vllm_serve_main
from .scripts.vllm_serve import make_parser as make_vllm_serve_parser
def main():
parser = TrlParser(prog="TRL CLI", usage="trl", allow_abbrev=False)
# Add the subparsers
subparsers = parser.add_subparsers(help="available commands", dest="command", parser_class=TrlParser)
# Add the subparsers for every script
make_dpo_parser(subparsers)
subparsers.add_parser("env", help="Print the environment information")
make_grpo_parser(subparsers)
make_kto_parser(subparsers)
make_sft_parser(subparsers)
make_vllm_serve_parser(subparsers)
# Parse the arguments; the remaining ones (`launch_args`) are passed to the 'accelerate launch' subparser.
# Duplicates may occur if the same argument is provided in both the config file and CLI.
# For example: launch_args = `["--num_processes", "4", "--num_processes", "8"]`.
# Deduplication and precedence (CLI over config) are handled later by launch_command_parser.
args, launch_args = parser.parse_args_and_config(return_remaining_strings=True)
# Replace `--accelerate_config foo` with `--config_file trl/accelerate_configs/foo.yaml` if it is present in the
# launch_args. It allows the user to use predefined accelerate configs from the `trl` package.
if "--accelerate_config" in launch_args:
# Get the index of the '--accelerate_config' argument and the corresponding config name
config_index = launch_args.index("--accelerate_config")
config_name = launch_args[config_index + 1]
# If the config_name correspond to a path in the filesystem, we don't want to override it
if os.path.isfile(config_name):
accelerate_config_path = config_name
elif resources.files("trl.accelerate_configs").joinpath(f"{config_name}.yaml").exists():
# Get the predefined accelerate config path from the package resources
accelerate_config_path = resources.files("trl.accelerate_configs").joinpath(f"{config_name}.yaml")
else:
raise ValueError(
f"Accelerate config {config_name} is neither a file nor a valid config in the `trl` package. "
"Please provide a valid config name or a path to a config file."
)
# Remove '--accelerate_config' and its corresponding config name
launch_args.pop(config_index)
launch_args.pop(config_index)
# Insert '--config_file' and the absolute path to the front of the list
launch_args = ["--config_file", str(accelerate_config_path)] + launch_args
if args.command == "dpo":
# Get the default args for the launch command
dpo_training_script = resources.files("trl.scripts").joinpath("dpo.py")
args = launch_command_parser().parse_args([str(dpo_training_script)])
# Feed the args to the launch command
args.training_script_args = sys.argv[2:] # remove "trl" and "dpo"
launch_command(args) # launch training
elif args.command == "env":
print_env()
elif args.command == "grpo":
# Get the default args for the launch command
grpo_training_script = resources.files("trl.scripts").joinpath("grpo.py")
args = launch_command_parser().parse_args([str(grpo_training_script)])
# Feed the args to the launch command
args.training_script_args = sys.argv[2:] # remove "trl" and "grpo"
launch_command(args) # launch training
elif args.command == "kto":
# Get the default args for the launch command
kto_training_script = resources.files("trl.scripts").joinpath("kto.py")
args = launch_command_parser().parse_args([str(kto_training_script)])
# Feed the args to the launch command
args.training_script_args = sys.argv[2:] # remove "trl" and "kto"
launch_command(args) # launch training
elif args.command == "sft":
# Get the path to the training script
sft_training_script = resources.files("trl.scripts").joinpath("sft.py")
# This simulates running: `accelerate launch <launch args> sft.py <training script args>`.
# Note that the training script args may include launch-related arguments (e.g., `--num_processes`),
# but we rely on the script to ignore any that don't apply to it.
training_script_args = sys.argv[2:] # Remove "trl" and "sft"
args = launch_command_parser().parse_args(launch_args + [str(sft_training_script)] + training_script_args)
launch_command(args) # launch training
elif args.command == "vllm-serve":
(script_args,) = parser.parse_args_and_config()
# Known issue: Using DeepSpeed with tensor_parallel_size=1 and data_parallel_size>1 may cause a crash when
# launched via the CLI. Suggest running the module directly.
# More information: https://github.com/vllm-project/vllm/issues/17079
if script_args.tensor_parallel_size == 1 and script_args.data_parallel_size > 1:
warnings.warn(
"Detected configuration: tensor_parallel_size=1 and data_parallel_size>1. This setup is known to "
"cause a crash when using the `trl vllm-serve` CLI entry point. As a workaround, please run the "
"server using the module path instead: `python -m trl.scripts.vllm_serve`",
RuntimeWarning,
)
vllm_serve_main(script_args)
if __name__ == "__main__":
main()