trl-sandbox / tests /test_vllm_client_server.py
ivangabriele's picture
feat: initialize project
2f5127c verified
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import signal
import subprocess
import unittest
import psutil
import pytest
from transformers import AutoModelForCausalLM
from transformers.testing_utils import require_torch_multi_accelerator, torch_device
from trl.extras.vllm_client import VLLMClient
from trl.scripts.vllm_serve import chunk_list
from .testing_utils import require_3_accelerators
class TestChunkList(unittest.TestCase):
def test_even_split(self):
self.assertEqual(chunk_list([1, 2, 3, 4, 5, 6], 2), [[1, 2, 3], [4, 5, 6]])
def test_uneven_split(self):
self.assertEqual(chunk_list([1, 2, 3, 4, 5, 6], 4), [[1, 2], [3, 4], [5], [6]])
def test_more_chunks_than_elements(self):
self.assertEqual(chunk_list([1, 2, 3, 4, 5, 6], 8), [[1], [2], [3], [4], [5], [6], [], []])
def test_n_equals_len(self):
self.assertEqual(chunk_list([1, 2, 3], 3), [[1], [2], [3]])
def test_n_is_1(self):
self.assertEqual(chunk_list([1, 2, 3], 1), [[1, 2, 3]])
def test_single_element_list(self):
self.assertEqual(chunk_list([42], 2), [[42], []])
def test_any_dtype(self):
self.assertEqual(
chunk_list([1, "two", 3.0, {"four": 4}, ["f", "i", "v", "e"]], 2),
[[1, "two", 3.0], [{"four": 4}, ["f", "i", "v", "e"]]],
)
@pytest.mark.slow
@require_torch_multi_accelerator
class TestVLLMClientServer(unittest.TestCase):
model_id = "Qwen/Qwen2.5-1.5B"
@classmethod
def setUpClass(cls):
# We want the server to run on accelerator 1, so we set VISIBLE_DEVICES to "1"
env = os.environ.copy()
VISIBLE_DEVICES = "ZE_AFFINITY_MASK" if torch_device == "xpu" else "CUDA_VISIBLE_DEVICES"
env[VISIBLE_DEVICES] = "1" # Restrict to accelerator 1
# Start the server process
cls.server_process = subprocess.Popen(
["trl", "vllm-serve", "--model", cls.model_id], stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=env
)
# Initialize the client
cls.client = VLLMClient(connection_timeout=240)
cls.client.init_communicator()
def test_generate(self):
prompts = ["Hello, AI!", "Tell me a joke"]
outputs = self.client.generate(prompts)
# Check that the output is a list
self.assertIsInstance(outputs, list)
# Check that the number of generated sequences is equal to the number of prompts
self.assertEqual(len(outputs), len(prompts))
# Check that the generated sequences are lists of integers
for seq in outputs:
self.assertTrue(all(isinstance(tok, int) for tok in seq))
def test_generate_with_params(self):
prompts = ["Hello, AI!", "Tell me a joke"]
outputs = self.client.generate(prompts, n=2, repetition_penalty=0.9, temperature=0.8, max_tokens=32)
# Check that the output is a list
self.assertIsInstance(outputs, list)
# Check that the number of generated sequences is 2 times the number of prompts
self.assertEqual(len(outputs), 2 * len(prompts))
# Check that the generated sequences are lists of integers
for seq in outputs:
self.assertTrue(all(isinstance(tok, int) for tok in seq))
# Check that the length of the generated sequences is less than or equal to 32
for seq in outputs:
self.assertLessEqual(len(seq), 32)
def test_update_model_params(self):
model = AutoModelForCausalLM.from_pretrained(self.model_id, device_map=torch_device)
self.client.update_model_params(model)
def test_reset_prefix_cache(self):
# Test resetting the prefix cache
self.client.reset_prefix_cache()
@classmethod
def tearDownClass(cls):
super().tearDownClass()
# Close the client
cls.client.close_communicator()
# vLLM x pytest (or Popen) seems not to handle process termination well. To avoid zombie processes, we need to
# kill the server process and its children explicitly.
parent = psutil.Process(cls.server_process.pid)
children = parent.children(recursive=True)
for child in children:
child.send_signal(signal.SIGTERM)
cls.server_process.terminate()
cls.server_process.wait()
# Same as above but using base_url to instantiate the client.
@pytest.mark.slow
@require_torch_multi_accelerator
class TestVLLMClientServerBaseURL(unittest.TestCase):
model_id = "Qwen/Qwen2.5-1.5B"
@classmethod
def setUpClass(cls):
# We want the server to run on accelerator 1, so we set VISIBLE_DEVICES to "1"
env = os.environ.copy()
VISIBLE_DEVICES = "ZE_AFFINITY_MASK" if torch_device == "xpu" else "CUDA_VISIBLE_DEVICES"
env[VISIBLE_DEVICES] = "1" # Restrict to accelerator 1
# Start the server process
cls.server_process = subprocess.Popen(
["trl", "vllm-serve", "--model", cls.model_id], stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=env
)
# Initialize the client
cls.client = VLLMClient(base_url="http://localhost:8000", connection_timeout=240)
cls.client.init_communicator()
def test_generate(self):
prompts = ["Hello, AI!", "Tell me a joke"]
outputs = self.client.generate(prompts)
# Check that the output is a list
self.assertIsInstance(outputs, list)
# Check that the number of generated sequences is equal to the number of prompts
self.assertEqual(len(outputs), len(prompts))
# Check that the generated sequences are lists of integers
for seq in outputs:
self.assertTrue(all(isinstance(tok, int) for tok in seq))
def test_generate_with_params(self):
prompts = ["Hello, AI!", "Tell me a joke"]
outputs = self.client.generate(prompts, n=2, repetition_penalty=0.9, temperature=0.8, max_tokens=32)
# Check that the output is a list
self.assertIsInstance(outputs, list)
# Check that the number of generated sequences is 2 times the number of prompts
self.assertEqual(len(outputs), 2 * len(prompts))
# Check that the generated sequences are lists of integers
for seq in outputs:
self.assertTrue(all(isinstance(tok, int) for tok in seq))
# Check that the length of the generated sequences is less than or equal to 32
for seq in outputs:
self.assertLessEqual(len(seq), 32)
def test_update_model_params(self):
model = AutoModelForCausalLM.from_pretrained(self.model_id, device_map=torch_device)
self.client.update_model_params(model)
def test_reset_prefix_cache(self):
# Test resetting the prefix cache
self.client.reset_prefix_cache()
@classmethod
def tearDownClass(cls):
super().tearDownClass()
# Close the client
cls.client.close_communicator()
# vLLM x pytest (or Popen) seems not to handle process termination well. To avoid zombie processes, we need to
# kill the server process and its children explicitly.
parent = psutil.Process(cls.server_process.pid)
children = parent.children(recursive=True)
for child in children:
child.send_signal(signal.SIGTERM)
cls.server_process.terminate()
cls.server_process.wait()
@pytest.mark.slow
@require_3_accelerators
class TestVLLMClientServerTP(unittest.TestCase):
model_id = "Qwen/Qwen2.5-1.5B"
@classmethod
def setUpClass(cls):
# We want the server to run on accelerator 1 and 2, so we set VISIBLE_DEVICES to "1,2"
env = os.environ.copy()
VISIBLE_DEVICES = "ZE_AFFINITY_MASK" if torch_device == "xpu" else "CUDA_VISIBLE_DEVICES"
env[VISIBLE_DEVICES] = "1,2" # Restrict to accelerator 1 and 2
# Start the server process
cls.server_process = subprocess.Popen(
["trl", "vllm-serve", "--model", cls.model_id, "--tensor_parallel_size", "2"],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
env=env,
)
# Initialize the client
cls.client = VLLMClient(connection_timeout=240)
cls.client.init_communicator()
def test_generate(self):
prompts = ["Hello, AI!", "Tell me a joke"]
outputs = self.client.generate(prompts)
# Check that the output is a list
self.assertIsInstance(outputs, list)
# Check that the number of generated sequences is equal to the number of prompts
self.assertEqual(len(outputs), len(prompts))
# Check that the generated sequences are lists of integers
for seq in outputs:
self.assertTrue(all(isinstance(tok, int) for tok in seq))
def test_update_model_params(self):
model = AutoModelForCausalLM.from_pretrained(self.model_id, device_map=torch_device)
self.client.update_model_params(model)
def test_reset_prefix_cache(self):
# Test resetting the prefix cache
self.client.reset_prefix_cache()
@classmethod
def tearDownClass(cls):
super().tearDownClass()
# Close the client
cls.client.close_communicator()
# vLLM x pytest (or Popen) seems not to handle process termination well. To avoid zombie processes, we need to
# kill the server process and its children explicitly.
parent = psutil.Process(cls.server_process.pid)
children = parent.children(recursive=True)
for child in children:
child.send_signal(signal.SIGTERM)
cls.server_process.terminate()
cls.server_process.wait()
@pytest.mark.slow
@require_3_accelerators
class TestVLLMClientServerDP(unittest.TestCase):
model_id = "Qwen/Qwen2.5-1.5B"
@classmethod
def setUpClass(cls):
# We want the server to run on accelerator 1 and 2, so we set VISIBLE_DEVICES to "1,2"
env = os.environ.copy()
VISIBLE_DEVICES = "ZE_AFFINITY_MASK" if torch_device == "xpu" else "CUDA_VISIBLE_DEVICES"
env[VISIBLE_DEVICES] = "1,2" # Restrict to accelerator 1 and 2
# Start the server process
cls.server_process = subprocess.Popen(
["trl", "vllm-serve", "--model", cls.model_id, "--data_parallel_size", "2"],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
env=env,
)
# Initialize the client
cls.client = VLLMClient(connection_timeout=240)
def test_generate(self):
prompts = ["Hello, AI!", "Tell me a joke"]
outputs = self.client.generate(prompts)
# Check that the output is a list
self.assertIsInstance(outputs, list)
# Check that the number of generated sequences is equal to the number of prompts
self.assertEqual(len(outputs), len(prompts))
# Check that the generated sequences are lists of integers
for seq in outputs:
self.assertTrue(all(isinstance(tok, int) for tok in seq))
def test_update_model_params(self):
model = AutoModelForCausalLM.from_pretrained(self.model_id, device_map=torch_device)
self.client.update_model_params(model)
def test_reset_prefix_cache(self):
# Test resetting the prefix cache
self.client.reset_prefix_cache()
@classmethod
def tearDownClass(cls):
super().tearDownClass()
# Close the client
cls.client.close_communicator()
# vLLM x pytest (or Popen) seems not to handle process termination well. To avoid zombie processes, we need to
# kill the server process and its children explicitly.
parent = psutil.Process(cls.server_process.pid)
children = parent.children(recursive=True)
for child in children:
child.send_signal(signal.SIGTERM)
cls.server_process.terminate()
cls.server_process.wait()