Spaces:
Paused
Paused
# Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import tempfile | |
import unittest | |
import torch | |
import torch.nn as nn | |
from datasets import Dataset | |
from transformers import Trainer, TrainingArguments | |
from trl.trainer.callbacks import RichProgressCallback | |
from .testing_utils import require_rich | |
class DummyModel(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.a = nn.Parameter(torch.tensor(1.0)) | |
def forward(self, x): | |
return self.a * x | |
class TestRichProgressCallback(unittest.TestCase): | |
def setUp(self): | |
self.dummy_model = DummyModel() | |
self.dummy_train_dataset = Dataset.from_list([{"x": 1.0, "y": 2.0}] * 5) | |
self.dummy_val_dataset = Dataset.from_list([{"x": 1.0, "y": 2.0}] * 101) | |
def test_rich_progress_callback_logging(self): | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
training_args = TrainingArguments( | |
output_dir=tmp_dir, | |
per_device_eval_batch_size=2, | |
per_device_train_batch_size=2, | |
num_train_epochs=4, | |
eval_strategy="steps", | |
eval_steps=1, | |
logging_strategy="steps", | |
logging_steps=1, | |
save_strategy="no", | |
report_to="none", | |
disable_tqdm=True, | |
) | |
callbacks = [RichProgressCallback()] | |
trainer = Trainer( | |
model=self.dummy_model, | |
train_dataset=self.dummy_train_dataset, | |
eval_dataset=self.dummy_val_dataset, | |
args=training_args, | |
callbacks=callbacks, | |
) | |
trainer.train() | |
trainer.train() | |