trl-sandbox / tests /test_prm_trainer.py
ivangabriele's picture
feat: initialize project
2f5127c verified
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest
from unittest.mock import MagicMock
import torch
from datasets import Dataset, load_dataset
from parameterized import parameterized
from transformers import AutoModelForTokenClassification, AutoTokenizer, PreTrainedTokenizerBase
from transformers.testing_utils import require_peft
from transformers.utils import is_peft_available
from trl import PRMConfig, PRMTrainer
if is_peft_available():
from peft import LoraConfig, TaskType
class TestTokenizeRow(unittest.TestCase):
def setUp(self):
# Set up the mock tokenizer with specific behaviors
self.tokenizer = MagicMock(spec=PreTrainedTokenizerBase)
self.tokenizer.bos_token_id = 0
self.tokenizer.eos_token_id = 2
def mock_encode(text, add_special_tokens):
token_map = {
"Which number is larger, 9.8 or 9.11?": [465, 6766, 318, 298],
"11 is greater than 8.": [4, 322, 12],
"Hence, 9.11 > 9.8.": [4995, 11, 22],
"\n": [1030],
"\n\n": [1030, 1030],
}
return token_map[text]
def mock_tokenizer_call(text, add_special_tokens):
return {"input_ids": mock_encode(text, add_special_tokens)}
self.tokenizer.encode.side_effect = mock_encode
self.tokenizer.side_effect = mock_tokenizer_call
def test_tokenize_row_no_truncation(self):
# Define the input features
features = {
"prompt": "Which number is larger, 9.8 or 9.11?",
"completions": ["11 is greater than 8.", "Hence, 9.11 > 9.8."],
"labels": [True, False],
}
# Call the method with no truncation
result = PRMTrainer.tokenize_row(
features=features,
tokenizer=self.tokenizer,
step_separator="\n",
max_length=None,
max_prompt_length=None,
max_completion_length=None,
train_on_last_step_only=False,
is_eval=False,
)
self.assertEqual(
result,
{
"input_ids": [0, 465, 6766, 318, 298, 4, 322, 12, 1030, 4995, 11, 22, 1030],
"labels": [-100, -100, -100, -100, -100, -100, -100, -100, 1, -100, -100, -100, 0],
},
)
def test_tokenize_row_train_on_last_step_only(self):
# Define the input features
features = {
"prompt": "Which number is larger, 9.8 or 9.11?",
"completions": ["11 is greater than 8.", "Hence, 9.11 > 9.8."],
"labels": [True, False],
}
result = PRMTrainer.tokenize_row(
features=features,
tokenizer=self.tokenizer,
step_separator="\n",
max_length=None,
max_prompt_length=None,
max_completion_length=None,
train_on_last_step_only=True,
is_eval=False,
)
self.assertEqual(
result,
{
"input_ids": [0, 465, 6766, 318, 298, 4, 322, 12, 1030, 4995, 11, 22, 1030],
"labels": [-100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 0],
},
)
def test_tokenize_row_prompt_truncation(self):
# Define the input features
features = {
"prompt": "Which number is larger, 9.8 or 9.11?",
"completions": ["11 is greater than 8.", "Hence, 9.11 > 9.8."],
"labels": [True, False],
}
# Call the method with truncation on the completion
result = PRMTrainer.tokenize_row(
features=features,
tokenizer=self.tokenizer,
step_separator="\n",
max_length=None,
max_prompt_length=3,
max_completion_length=None,
train_on_last_step_only=False,
is_eval=False,
)
self.assertEqual(
result,
{
"input_ids": [6766, 318, 298, 4, 322, 12, 1030, 4995, 11, 22, 1030],
"labels": [-100, -100, -100, -100, -100, -100, 1, -100, -100, -100, 0],
},
)
def test_tokenize_row_completion_truncation(self):
# Define the input features
features = {
"prompt": "Which number is larger, 9.8 or 9.11?",
"completions": ["11 is greater than 8.", "Hence, 9.11 > 9.8."],
"labels": [True, False],
}
# Call the method with truncation on the completion
result = PRMTrainer.tokenize_row(
features=features,
tokenizer=self.tokenizer,
step_separator="\n",
max_length=None,
max_prompt_length=None,
max_completion_length=6,
train_on_last_step_only=False,
is_eval=False,
)
self.assertEqual(
result,
{
"input_ids": [0, 465, 6766, 318, 298, 4, 322, 12, 1030, 4995, 11],
"labels": [-100, -100, -100, -100, -100, -100, -100, -100, 1, -100, -100],
},
)
def test_tokenize_row_prompt_completion_truncation(self):
# Define the input features
features = {
"prompt": "Which number is larger, 9.8 or 9.11?",
"completions": ["11 is greater than 8.", "Hence, 9.11 > 9.8."],
"labels": [True, False],
}
# Call the method with truncation on the prompt and completion
result = PRMTrainer.tokenize_row(
features=features,
tokenizer=self.tokenizer,
step_separator="\n",
max_length=9,
max_prompt_length=None,
max_completion_length=None,
train_on_last_step_only=False,
is_eval=False,
)
self.assertEqual(
result,
{
"input_ids": [0, 465, 6766, 318, 298, 4, 322, 12, 1030],
"labels": [-100, -100, -100, -100, -100, -100, -100, -100, 1],
},
)
def test_tokenize_row_multi_token_separator(self):
# Define the input features
features = {
"prompt": "Which number is larger, 9.8 or 9.11?",
"completions": ["11 is greater than 8.", "Hence, 9.11 > 9.8."],
"labels": [True, False],
}
# Call the method using multiple tokens as step_separator
result = PRMTrainer.tokenize_row(
features=features,
tokenizer=self.tokenizer,
step_separator="\n\n",
max_length=None,
max_prompt_length=None,
max_completion_length=None,
train_on_last_step_only=False,
is_eval=False,
)
self.assertEqual(
result,
{
"input_ids": [0, 465, 6766, 318, 298, 4, 322, 12, 1030, 1030, 4995, 11, 22, 1030, 1030],
"labels": [-100, -100, -100, -100, -100, -100, -100, -100, -100, 1, -100, -100, -100, -100, 0],
},
)
class PRMTrainerTester(unittest.TestCase):
def setUp(self):
model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5"
self.model = AutoModelForTokenClassification.from_pretrained(model_id)
self.tokenizer = AutoTokenizer.from_pretrained(model_id)
@parameterized.expand([True, False])
def test_train_full(self, train_on_last_step_only):
with tempfile.TemporaryDirectory() as tmp_dir:
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_stepwise_supervision", split="train")
training_args = PRMConfig(
output_dir=tmp_dir,
report_to="none",
train_on_last_step_only=train_on_last_step_only,
)
trainer = PRMTrainer(
model=self.model, args=training_args, processing_class=self.tokenizer, train_dataset=dummy_dataset
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
# Check that the parameters have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
if param.sum() != 0: # ignore 0 biases
self.assertFalse(torch.allclose(param, new_param, rtol=1e-12, atol=1e-12))
def test_train_full_pretokenized(self):
with tempfile.TemporaryDirectory() as tmp_dir:
dummy_dataset = Dataset.from_dict(
{
"labels": [
[-100, -100, -100, -100, -100, -100, -100, -100, -100, 0, -100, -100, 1],
[-100, -100, -100, -100, -100, -100, -100, -100, 0, -100, -100, 1, -100, -100, -100, -100, 0],
[-100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 0, -100, -100, 1],
[-100, -100, -100, -100, -100, -100, -100, 1, -100, -100, 1],
[-100, -100, -100, -100, -100, -100, -100, -100, -100, 1, -100, -100, 0],
[-100, -100, -100, -100, -100, -100, -100, -100, -100, 1],
[-100, -100, -100, -100, -100, -100, -100, -100, -100, 0],
[-100, -100, -100, -100, -100, -100, -100, -100, -100, 1, -100, -100, -100, -100, -100, 0],
[-100, -100, -100, -100, -100, -100, -100, -100, 0, -100, -100, 0],
[-100, -100, -100, -100, -100, -100, 0, -100, -100, -100, -100, 0],
[-100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 1],
[-100, -100, -100, -100, -100, -100, 0],
[-100, -100, -100, -100, -100, -100, -100, -100, 1],
[-100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 0],
],
"input_ids": [
[46518, 374, 2664, 1091, 11, 1077, 752, 1744, 1112, 198, 27261, 13, 198],
[98923, 374, 2664, 1091, 11, 315, 3308, 11, 198, 17995, 13, 198, 1576, 31273, 12850, 13, 198],
[16374, 374, 2664, 1091, 1112, 1077, 594, 2506, 432, 6770, 11, 198, 6351, 13, 198],
[31137, 374, 2664, 1091, 979, 4362, 11, 198, 16965, 13, 198],
[31019, 374, 2664, 1091, 304, 3793, 315, 5944, 11, 198, 24034, 13, 198],
[98491, 374, 2664, 1091, 1112, 5310, 369, 91494, 13, 198],
[4418, 2897, 14579, 5310, 979, 3800, 1349, 432, 13, 198],
[20366, 5048, 7629, 944, 3281, 3322, 11, 7241, 1112, 198, 807, 1795, 279, 5601, 13, 198],
[15802, 14976, 487, 33327, 1045, 31787, 63443, 11, 198, 52400, 13, 198],
[13877, 1265, 2581, 1494, 49394, 11, 198, 7241, 20975, 91681, 13, 198],
[641, 279, 3579, 315, 71768, 11, 25066, 279, 61361, 311, 7942, 13, 198],
[7039, 374, 2664, 1091, 2937, 13, 198],
[26155, 374, 3545, 2664, 1091, 34933, 26537, 13, 198],
[2679, 279, 8129, 374, 4135, 311, 10339, 11, 432, 2578, 387, 264, 1661, 2884, 13, 198],
],
}
)
training_args = PRMConfig(output_dir=tmp_dir, report_to="none")
trainer = PRMTrainer(
model=self.model, args=training_args, processing_class=self.tokenizer, train_dataset=dummy_dataset
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
# Check that the parameters have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
if param.sum() != 0: # ignore 0 biases
self.assertFalse(torch.allclose(param, new_param, rtol=1e-12, atol=1e-12))
@require_peft
def test_train_lora(self):
peft_config = LoraConfig(
task_type=TaskType.TOKEN_CLS,
inference_mode=False,
r=8,
lora_alpha=32,
lora_dropout=0.1,
)
with tempfile.TemporaryDirectory() as tmp_dir:
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_stepwise_supervision", split="train")
training_args = PRMConfig(output_dir=tmp_dir, max_steps=3, report_to="none")
trainer = PRMTrainer(
model=self.model,
args=training_args,
processing_class=self.tokenizer,
train_dataset=dummy_dataset,
peft_config=peft_config,
)
previous_trainable_params = {}
previous_non_trainable_params = {}
# due to a change in the way the modules to save are dealt in PEFT.
trainable_params_name = ["lora", "modules_to_save"]
# check gradients are not None
for n, param in trainer.model.named_parameters():
if any(t in n for t in trainable_params_name):
previous_trainable_params[n] = param.clone()
else:
previous_non_trainable_params[n] = param.clone()
trainer.train()
self.assertIsNotNone(trainer.state.log_history[(-1)]["train_loss"])
# Check that the parameters have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
self.assertFalse(torch.allclose(param, new_param, atol=1e-12, rtol=1e-12))
# Check that the non trainable parameters have not changed
for n, param in previous_non_trainable_params.items():
new_param = trainer.model.get_parameter(n)
self.assertTrue(torch.allclose(param, new_param, atol=1e-12, rtol=1e-12))
def test_tags(self):
with tempfile.TemporaryDirectory() as tmp_dir:
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_stepwise_supervision", split="train")
training_args = PRMConfig(output_dir=tmp_dir, report_to="none")
trainer = PRMTrainer(
model=self.model, args=training_args, processing_class=self.tokenizer, train_dataset=dummy_dataset
)
self.assertEqual(trainer.model.model_tags, trainer._tag_names)