Spaces:
Paused
Paused
# Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import tempfile | |
import unittest | |
import torch | |
from transformers import AutoModelForCausalLM | |
from transformers.testing_utils import ( | |
require_peft, | |
require_torch_gpu_if_bnb_not_multi_backend_enabled, | |
) | |
from transformers.utils import is_peft_available | |
from trl import AutoModelForCausalLMWithValueHead | |
if is_peft_available(): | |
from peft import LoraConfig, get_peft_model | |
class PeftModelTester(unittest.TestCase): | |
def setUp(self): | |
self.causal_lm_model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5" | |
self.lora_config = LoraConfig( | |
r=16, | |
lora_alpha=32, | |
lora_dropout=0.05, | |
bias="none", | |
task_type="CAUSAL_LM", | |
) | |
def test_create_peft_model(self): | |
r""" | |
Simply creates a peft model and checks that it can be loaded. | |
""" | |
causal_lm_model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id) | |
pretrained_model = get_peft_model(causal_lm_model, self.lora_config) | |
_ = AutoModelForCausalLMWithValueHead.from_pretrained(pretrained_model) | |
def test_peft_requires_grad(self): | |
r""" | |
Check that the value head of the returned model has requires_grad=True. | |
""" | |
causal_lm_model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id) | |
pretrained_model = get_peft_model(causal_lm_model, self.lora_config) | |
model = AutoModelForCausalLMWithValueHead.from_pretrained(pretrained_model) | |
# Check that the value head has requires_grad=True | |
self.assertTrue(model.v_head.summary.weight.requires_grad) | |
def test_check_peft_model_nb_trainable_params(self): | |
r""" | |
Check that the number of trainable parameters is correct. | |
""" | |
causal_lm_model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id) | |
pretrained_model = get_peft_model(causal_lm_model, self.lora_config) | |
model = AutoModelForCausalLMWithValueHead.from_pretrained(pretrained_model) | |
# Check that the number of trainable parameters is correct | |
nb_trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad) | |
self.assertEqual(nb_trainable_params, 905) | |
# Check that the number of trainable param for the non-peft model is correct | |
non_peft_model = AutoModelForCausalLMWithValueHead.from_pretrained(self.causal_lm_model_id) | |
nb_trainable_params = sum(p.numel() for p in non_peft_model.parameters() if p.requires_grad) | |
self.assertEqual(nb_trainable_params, 2428641) | |
def test_create_peft_model_from_config(self): | |
r""" | |
Simply creates a peft model and checks that it can be loaded. | |
""" | |
trl_model = AutoModelForCausalLMWithValueHead.from_pretrained( | |
self.causal_lm_model_id, peft_config=self.lora_config | |
) | |
# Check that the number of trainable parameters is correct | |
nb_trainable_params = sum(p.numel() for p in trl_model.parameters() if p.requires_grad) | |
self.assertEqual(nb_trainable_params, 905) | |
causal_lm_model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id) | |
trl_model = AutoModelForCausalLMWithValueHead.from_pretrained(causal_lm_model, peft_config=self.lora_config) | |
# Check that the number of trainable parameters is correct | |
nb_trainable_params = sum(p.numel() for p in trl_model.parameters() if p.requires_grad) | |
self.assertEqual(nb_trainable_params, 905) | |
def test_create_bnb_peft_model_from_config(self): | |
r""" | |
Simply creates a peft model and checks that it can be loaded. | |
""" | |
from bitsandbytes.nn import Linear8bitLt | |
trl_model = AutoModelForCausalLMWithValueHead.from_pretrained( | |
self.causal_lm_model_id, peft_config=self.lora_config, load_in_8bit=True | |
) | |
# Check that the number of trainable parameters is correct | |
nb_trainable_params = sum(p.numel() for p in trl_model.parameters() if p.requires_grad) | |
self.assertEqual(nb_trainable_params, 905) | |
self.assertIsInstance(trl_model.pretrained_model.model.model.layers[0].mlp.gate_proj, Linear8bitLt) | |
causal_lm_model = AutoModelForCausalLM.from_pretrained( | |
self.causal_lm_model_id, load_in_8bit=True, device_map="auto" | |
) | |
trl_model = AutoModelForCausalLMWithValueHead.from_pretrained(causal_lm_model, peft_config=self.lora_config) | |
# Check that the number of trainable parameters is correct | |
nb_trainable_params = sum(p.numel() for p in trl_model.parameters() if p.requires_grad) | |
self.assertEqual(nb_trainable_params, 905) | |
self.assertIsInstance(trl_model.pretrained_model.model.model.layers[0].mlp.gate_proj, Linear8bitLt) | |
def test_save_pretrained_peft(self): | |
r""" | |
Check that the model can be saved and loaded properly. | |
""" | |
causal_lm_model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id) | |
pretrained_model = get_peft_model(causal_lm_model, self.lora_config) | |
model = AutoModelForCausalLMWithValueHead.from_pretrained(pretrained_model) | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
model.save_pretrained(tmp_dir) | |
# check that the files `adapter_model.safetensors` and `adapter_config.json` are in the directory | |
self.assertTrue( | |
os.path.isfile(f"{tmp_dir}/adapter_model.safetensors"), | |
f"{tmp_dir}/adapter_model.safetensors does not exist", | |
) | |
self.assertTrue( | |
os.path.exists(f"{tmp_dir}/adapter_config.json"), f"{tmp_dir}/adapter_config.json does not exist" | |
) | |
# check also for `pytorch_model.bin` and make sure it only contains `v_head` weights | |
self.assertTrue( | |
os.path.exists(f"{tmp_dir}/pytorch_model.bin"), f"{tmp_dir}/pytorch_model.bin does not exist" | |
) | |
# check that only keys that starts with `v_head` are in the dict | |
maybe_v_head = torch.load(f"{tmp_dir}/pytorch_model.bin", weights_only=True) | |
self.assertTrue( | |
all(k.startswith("v_head") for k in maybe_v_head.keys()), | |
f"keys in {tmp_dir}/pytorch_model.bin do not start with `v_head`", | |
) | |
model_from_pretrained = AutoModelForCausalLMWithValueHead.from_pretrained(tmp_dir) | |
# check all the weights are the same | |
for p1, p2 in zip(model.named_parameters(), model_from_pretrained.named_parameters()): | |
self.assertTrue(torch.allclose(p1[1], p2[1]), f"{p1[0]} != {p2[0]}") | |
def test_load_pretrained_peft(self): | |
r""" | |
Check that the model saved with peft class interface can be loaded properly. | |
""" | |
causal_lm_model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id) | |
pretrained_model = get_peft_model(causal_lm_model, self.lora_config) | |
model = AutoModelForCausalLMWithValueHead.from_pretrained(pretrained_model) | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
pretrained_model.save_pretrained(tmp_dir) | |
model_from_pretrained = AutoModelForCausalLMWithValueHead.from_pretrained(tmp_dir) | |
# check that the files `adapter_model.safetensors` and `adapter_config.json` are in the directory | |
self.assertTrue( | |
os.path.isfile(f"{tmp_dir}/adapter_model.safetensors"), | |
f"{tmp_dir}/adapter_model.safetensors does not exist", | |
) | |
self.assertTrue( | |
os.path.exists(f"{tmp_dir}/adapter_config.json"), f"{tmp_dir}/adapter_config.json does not exist" | |
) | |
# check all the weights are the same | |
for p1, p2 in zip(model.named_parameters(), model_from_pretrained.named_parameters()): | |
if p1[0] not in ["v_head.summary.weight", "v_head.summary.bias"]: | |
self.assertTrue(torch.allclose(p1[1], p2[1]), f"{p1[0]} != {p2[0]}") | |
def test_continue_training_peft_model(self): | |
r""" | |
Load peft and checks that it can continue training. | |
""" | |
causal_lm_model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id) | |
pretrained_model = get_peft_model(causal_lm_model, self.lora_config) | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
pretrained_model.save_pretrained(tmp_dir) | |
# set is_trainable to True | |
model = AutoModelForCausalLMWithValueHead.from_pretrained(tmp_dir, is_trainable=True) | |
# Check that the number of trainable parameters is correct | |
nb_trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad) | |
self.assertEqual(nb_trainable_params, 905) | |