Spaces:
Paused
Paused
# Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import unittest | |
import torch | |
from transformers.utils import is_peft_available | |
from trl.import_utils import is_diffusers_available | |
from .testing_utils import require_diffusers | |
if is_diffusers_available() and is_peft_available(): | |
from trl import DDPOConfig, DDPOTrainer, DefaultDDPOStableDiffusionPipeline | |
def scorer_function(images, prompts, metadata): | |
return torch.randn(1) * 3.0, {} | |
def prompt_function(): | |
return ("cabbages", {}) | |
class DDPOTrainerTester(unittest.TestCase): | |
""" | |
Test the DDPOTrainer class. | |
""" | |
def setUp(self): | |
self.training_args = DDPOConfig( | |
num_epochs=2, | |
train_gradient_accumulation_steps=1, | |
per_prompt_stat_tracking_buffer_size=32, | |
sample_num_batches_per_epoch=2, | |
sample_batch_size=2, | |
mixed_precision=None, | |
save_freq=1000000, | |
) | |
pretrained_model = "hf-internal-testing/tiny-stable-diffusion-torch" | |
pretrained_revision = "main" | |
pipeline = DefaultDDPOStableDiffusionPipeline( | |
pretrained_model, pretrained_model_revision=pretrained_revision, use_lora=False | |
) | |
self.trainer = DDPOTrainer(self.training_args, scorer_function, prompt_function, pipeline) | |
return super().setUp() | |
def tearDown(self) -> None: | |
gc.collect() | |
def test_loss(self): | |
advantage = torch.tensor([-1.0]) | |
clip_range = 0.0001 | |
ratio = torch.tensor([1.0]) | |
loss = self.trainer.loss(advantage, clip_range, ratio) | |
self.assertEqual(loss.item(), 1.0) | |
def test_generate_samples(self): | |
samples, output_pairs = self.trainer._generate_samples(1, 2) | |
self.assertEqual(len(samples), 1) | |
self.assertEqual(len(output_pairs), 1) | |
self.assertEqual(len(output_pairs[0][0]), 2) | |
def test_calculate_loss(self): | |
samples, _ = self.trainer._generate_samples(1, 2) | |
sample = samples[0] | |
latents = sample["latents"][0, 0].unsqueeze(0) | |
next_latents = sample["next_latents"][0, 0].unsqueeze(0) | |
log_probs = sample["log_probs"][0, 0].unsqueeze(0) | |
timesteps = sample["timesteps"][0, 0].unsqueeze(0) | |
prompt_embeds = sample["prompt_embeds"] | |
advantage = torch.tensor([1.0], device=prompt_embeds.device) | |
self.assertTupleEqual(latents.shape, (1, 4, 64, 64)) | |
self.assertTupleEqual(next_latents.shape, (1, 4, 64, 64)) | |
self.assertTupleEqual(log_probs.shape, (1,)) | |
self.assertTupleEqual(timesteps.shape, (1,)) | |
self.assertTupleEqual(prompt_embeds.shape, (2, 77, 32)) | |
loss, approx_kl, clipfrac = self.trainer.calculate_loss( | |
latents, timesteps, next_latents, log_probs, advantage, prompt_embeds | |
) | |
self.assertTrue(torch.isfinite(loss.cpu())) | |
class DDPOTrainerWithLoRATester(DDPOTrainerTester): | |
""" | |
Test the DDPOTrainer class. | |
""" | |
def setUp(self): | |
self.training_args = DDPOConfig( | |
num_epochs=2, | |
train_gradient_accumulation_steps=1, | |
per_prompt_stat_tracking_buffer_size=32, | |
sample_num_batches_per_epoch=2, | |
sample_batch_size=2, | |
mixed_precision=None, | |
save_freq=1000000, | |
) | |
pretrained_model = "hf-internal-testing/tiny-stable-diffusion-torch" | |
pretrained_revision = "main" | |
pipeline = DefaultDDPOStableDiffusionPipeline( | |
pretrained_model, pretrained_model_revision=pretrained_revision, use_lora=True | |
) | |
self.trainer = DDPOTrainer(self.training_args, scorer_function, prompt_function, pipeline) | |
return super().setUp() | |