Spaces:
Paused
Paused
# Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
from typing import Callable | |
from datasets import Dataset, load_dataset | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from trl.extras.dataset_formatting import get_formatting_func_from_dataset | |
from trl.models.utils import ChatMlSpecialTokens, setup_chat_format | |
class DatasetFormattingTestCase(unittest.TestCase): | |
def setUp(self): | |
self.llama_tokenizer = AutoTokenizer.from_pretrained("trl-internal-testing/tiny-MistralForCausalLM-0.1") | |
self.chatml_tokenizer = AutoTokenizer.from_pretrained("trl-internal-testing/tiny-Qwen2ForCausalLM-2.5") | |
def test_get_formatting_func_from_dataset_with_chatml_messages(self): | |
dataset = Dataset.from_dict( | |
{ | |
"messages": [ | |
[ | |
{"role": "system", "content": "You are helpful"}, | |
{"role": "user", "content": "Hello"}, | |
{"role": "assistant", "content": "Hi, how can I help you?"}, | |
] | |
] | |
} | |
) | |
# Llama tokenizer | |
formatting_func = get_formatting_func_from_dataset(dataset, self.llama_tokenizer) | |
self.assertIsInstance(formatting_func, Callable) | |
formatted_text = formatting_func(dataset[0]) | |
expected = "<s> [INST] You are helpful\n\nHello [/INST] Hi, how can I help you?</s>" | |
self.assertEqual(formatted_text, expected) | |
formatted_text = formatting_func(dataset[0:1]) | |
self.assertListEqual(formatted_text, [expected]) | |
# ChatML tokenizer | |
formatting_func = get_formatting_func_from_dataset(dataset, self.chatml_tokenizer) | |
formatted_text = formatting_func(dataset[0]) | |
expected = "<|im_start|>system\nYou are helpful<|im_end|>\n<|im_start|>user\nHello<|im_end|>\n<|im_start|>assistant\nHi, how can I help you?<|im_end|>\n" | |
self.assertEqual(formatted_text, expected) | |
formatted_text = formatting_func(dataset[0:1]) | |
self.assertListEqual(formatted_text, [expected]) | |
def test_get_formatting_func_from_dataset_with_chatml_conversations(self): | |
dataset = Dataset.from_dict( | |
{ | |
"conversations": [ | |
[ | |
{"role": "system", "content": "You are helpful"}, | |
{"role": "user", "content": "Hello"}, | |
{"role": "assistant", "content": "Hi, how can I help you?"}, | |
] | |
] | |
} | |
) | |
# Llama tokenizer | |
formatting_func = get_formatting_func_from_dataset(dataset, self.llama_tokenizer) | |
self.assertIsInstance(formatting_func, Callable) | |
formatted_text = formatting_func(dataset[0]) | |
expected = "<s> [INST] You are helpful\n\nHello [/INST] Hi, how can I help you?</s>" | |
self.assertEqual(formatted_text, expected) | |
formatted_text = formatting_func(dataset[0:1]) | |
self.assertListEqual(formatted_text, [expected]) | |
# ChatML tokenizer | |
formatting_func = get_formatting_func_from_dataset(dataset, self.chatml_tokenizer) | |
formatted_text = formatting_func(dataset[0]) | |
expected = "<|im_start|>system\nYou are helpful<|im_end|>\n<|im_start|>user\nHello<|im_end|>\n<|im_start|>assistant\nHi, how can I help you?<|im_end|>\n" | |
self.assertEqual(formatted_text, expected) | |
formatted_text = formatting_func(dataset[0:1]) | |
self.assertListEqual(formatted_text, [expected]) | |
def test_get_formatting_func_from_dataset_with_instruction(self): | |
dataset = Dataset.from_list( | |
[{"prompt": "What is 2+2?", "completion": "4"}, {"prompt": "What is 3+3?", "completion": "6"}] | |
) | |
formatting_func = get_formatting_func_from_dataset(dataset, self.llama_tokenizer) | |
self.assertIsNotNone(formatting_func) | |
self.assertIsInstance(formatting_func, Callable) | |
formatted_text = formatting_func(dataset[0]) | |
self.assertEqual(formatted_text, "<s> [INST] What is 2+2? [/INST] 4</s>") | |
formatted_text = formatting_func(dataset[0:1]) | |
self.assertListEqual(formatted_text, ["<s> [INST] What is 2+2? [/INST] 4</s>"]) | |
def test_get_formatting_func_from_dataset_from_hub(self): | |
ds_1 = load_dataset("philschmid/trl-test-instruction", split="train") | |
ds_2 = load_dataset("philschmid/dolly-15k-oai-style", split="train") | |
for ds in [ds_1, ds_2]: | |
formatting_func = get_formatting_func_from_dataset(ds, self.llama_tokenizer) | |
self.assertIsNotNone(formatting_func) | |
self.assertIsInstance(formatting_func, Callable) | |
ds_3 = load_dataset("philschmid/guanaco-sharegpt-style", split="train") | |
formatting_func = get_formatting_func_from_dataset(ds_3, self.llama_tokenizer) | |
self.assertIsNone(formatting_func) | |
def test_get_formatting_func_from_dataset_with_unknown_format(self): | |
dataset = Dataset.from_dict({"text": "test"}) | |
formatting_func = get_formatting_func_from_dataset(dataset, self.llama_tokenizer) | |
self.assertIsNone(formatting_func) | |
class SetupChatFormatTestCase(unittest.TestCase): | |
def setUp(self): | |
self.tokenizer = AutoTokenizer.from_pretrained("trl-internal-testing/tiny-Qwen2ForCausalLM-2.5") | |
self.model = AutoModelForCausalLM.from_pretrained("trl-internal-testing/tiny-Qwen2ForCausalLM-2.5") | |
# remove built-in chat_template to simulate a model having no chat_template | |
self.tokenizer.chat_template = None | |
def test_setup_chat_format(self): | |
modified_model, modified_tokenizer = setup_chat_format( | |
self.model, self.tokenizer, format="chatml", resize_to_multiple_of=64 | |
) | |
_chatml = ChatMlSpecialTokens() | |
# Check if special tokens are correctly set | |
self.assertEqual(modified_tokenizer.eos_token, "<|im_end|>") | |
self.assertEqual(modified_tokenizer.pad_token, "<|im_end|>") | |
self.assertEqual(modified_tokenizer.bos_token, "<|im_start|>") | |
self.assertEqual(modified_tokenizer.eos_token, _chatml.eos_token) | |
self.assertEqual(modified_tokenizer.pad_token, _chatml.pad_token) | |
self.assertEqual(modified_tokenizer.bos_token, _chatml.bos_token) | |
self.assertEqual((self.model.get_input_embeddings().weight.shape[0] % 64), 0) | |
def test_example_with_setup_model(self): | |
modified_model, modified_tokenizer = setup_chat_format( | |
self.model, | |
self.tokenizer, | |
) | |
messages = [ | |
{"role": "system", "content": "You are helpful"}, | |
{"role": "user", "content": "Hello"}, | |
{"role": "assistant", "content": "Hi, how can I help you?"}, | |
] | |
prompt = modified_tokenizer.apply_chat_template(messages, tokenize=False) | |
self.assertEqual( | |
prompt, | |
"<|im_start|>system\nYou are helpful<|im_end|>\n<|im_start|>user\nHello<|im_end|>\n<|im_start|>assistant\nHi, how can I help you?<|im_end|>\n", | |
) | |